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=PFL HybISS as the starting point for cell type identification
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=PFL  Connecting specific

progenitors to progeny

. Radial glia (RgIDD)
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Graph Generative Models

A Survey on Deep Graph Generation: Methods
and Application, LoG, PMLR
(https://arxiv.org/abs/2203.06714)
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B Graph Generative Models

Graph Generation Problem

=  Problem:

Using a set of graphs, we want to generate graphs that resemble similarity to real graphs.

Graph Generator

Given a large Generate a
real graph synthetic graph

= Applications:
Drug design, Material design, Program Synthesis, Social Network Modeling, etc.
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B Graph Generative Models

Approaches

= Traditional Methods

o Generating graphs with similar statistical and hand-crafted features derived
from real data.

o Oversimplifying assumption!

-
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B Graph Generative Models

Approaches

= Traditional Methods
o Generating graphs with similar statistical and hand-crafted features derived

from real data.
o Oversimplifying assumption!

= Deep Graph Generative Models

o Learn the graph formation process from the data itself.
o Can capture complex relationships!
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B Graph Generative Models

Overview of Generative Models

data.

can generate new samples.

unit gaussia

O

Z

n

\

generative

model
(neural net)

generated distribution

N

A

P(X)

image space

Discriminative models focus on classifying or distinguishing between existing categories of

Generative models, on the other hand, learn to replicate the underlying distribution of data and

true data distribution

image space
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=PrL Common Practices in Generative Models
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GAN: Adversarial ’ Discriminator Generator ,
. X X VA X
training D(x) G(z)
VAE: maximize Z Decoder %’
variational lower bound Po(x|2)
Flow-based models: X Flow > Z > Inllfrse . x/
Invertible transform of f(x) f(2)
distributions
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Overview of
Deep Graph Generative Models

Node ordering

(1) Auto-regressive models

Training
set

Generator

fa(2)

(2) Variational autoencoders
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1 ) Discriminator
—= fo(z)
7

- Encoder

gs(2 | )

Real

Fake

(4) Generative adversarial networks

Decoder
po(z | 2)

&

=

QAN

— - Flow _ _ _ Inverse
et N R

(3) Normalizing flows

Forward: q(z: | 1—1)

Reverse: pg(x¢—1 | @)

(5) Diffusion models
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B Graph Generative Models

Deep Graph Generative Models

Deep generative models
\VAE| |Flow | [Diffusion| ...

= 0
» /OH Encoder — ’\
fe(z | G)

Encoder maps observed graphs into a stochastic distribution.
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B Graph Generative Models

Deep Graph Generative Models

Sampling strategies
- Random
Deep generative models
\VAE| |Flow | [Diffusion| ... Controllable

— 0
@—/{OH _— Encoder — ’\ —>  Sampler -
fo(z|G) z ~p(z)

Sampler draws latent representations from that distribution.
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B Graph Generative Models

Deep Graph Generative Models

Generation strategies

O = Jon - FoJon ’

Sampling strategies
Sequential generation

Random o o

Deep generative models

\VAE| |Flow | [Diffusion| ...

® —| Neural Net [—> fBOH
P

z
Controllable [ One-hot generation

N J
—_— ‘ —_— Sampler —_— —_ %(8OH
z ~ p(2)

Decoder receives latent codes and produces graphs.
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B Graph Generative Models

Auto-Regressive Models

Node ordering

= AR models rely on the Chain Rule of Probability:

N N
p(G™) =]]p(GF | GT,G3, - ,GF,) = [ [ p(GT | GZ,)
=1

=1
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B Graph Generative Models

Auto-Regressive Models

Node ordering

= AR models rely on the Chain Rule of Probability:

N N
p(G™) =]]p(GF | GT,G3, - ,GF,) = [ [ p(GT | GZ,)
=1

=1

» The factorized distribution is learnt with Maximum Likelihood Estimation (MLE):

0* = arg max Empyore 108 Pmoder(x | 6)

N
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B Graph Generative Models

Auto-Regressive Models

Node ordering

= AR models rely on the Chain Rule of Probability:

N N
p(G™) =]]p(GF | GT,G3, - ,GF,) = [ [ p(GT | GZ,)
=1

=1
» The factorized distribution is learnt with Maximum Likelihood Estimation (MLE):

0* = arg max Empyore 108 Pmoder(x | 6)

= Since AR works like sequential generation, applying AR models requires a pre-specified
ordering 11 of nodes in the graph.

N
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B Jure Leskovec, CS224W Stanford: Machine Learning with Graphs

L

AR: GraphRNN

The sequence S™ has two levels (S is a sequence of sequences):

= Node-level: add nodes, one at a time
= Edge-level: add edges between existing nodes

Tod

= (ST ,s7 , S3 , S
“Add node 1” v

= Each Node-level step is an edge-level sequence

T _ T /2
S4 - ( 54,1 ’ 54,2 ’

“Not connect 4, 1 “Connect 4, 2”

0 1

, Sz
“Add node 5”

Siz )
“Connect 4, 3”

1

N
N
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B Jure Leskovec, CS224W Stanford: Machine Learning with Graphs

GraphRNN Training

Node-level RNN generates the initial
state for edge-level RNN

=

h1 ho hs hy hs heg
O—03 O—B
- ’ ‘ T T (5)
R AR A
l
SOS— 1| — 1) 0 0
o B Ed
Sg 1 1 Sample + Edge-level Update
Szlr |: - NodemUpdate
53

Edge-level RNN sequentially predict if the new node will

connect to each of the previous node

N
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L

Variational Autoencoders

— 0 |s Encoder N R Decoder
@_%H 9s(2z | ) po(x | 2)

= VAEs estimate the p(G) by maximizing the Evidence Lower Bound (ELBO) as follows:

Lyvag = Ezngy(zl0) 108(po(G | 2)) — Dxilge(2 | G) || po(2)))

N
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B Graph Generative Models

L

Variational Autoencoders

— 0 |s Encoder N R Decoder
@_%H 9s(2z | ) po(x | 2)

= VAEs estimate the p(G) by maximizing the Evidence Lower Bound (ELBO) as follows:
Lvag = Erg,(z16)108(po (G | 2)) — Dxi(gg(2 | G) [ po(2)))

=  The first term is the reconstruction objective. It represents the log-likelihood of the true data
G under the reconstructed distribution py (G|2).

=  The second term acts as a regularizer, encouraging the distribution of latent variables
qd4(z|G) to approximate a prior distribution p(z), often standard normal distribution.

N
o
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B Graph Generative Models

L

Variational Autoencoders

— 0 |s Encoder N R Decoder
@_%H 9s(2z | ) po(x | 2)

VAEs estimate the p(G) by maximizing the Evidence Lower Bound (ELBO) as follows:
Lvag = Erg,(z16)108(po (G | 2)) — Dxi(gg(2 | G) [ po(2)))

The first term is the reconstruction objective. It represents the log-likelihood of the true data
G under the reconstructed distribution py (G|2).

The second term acts as a regularizer, encouraging the distribution of latent variables
qd4(z|G) to approximate a prior distribution p(z), often standard normal distribution.

Encoder and Decoders are usually parameterized by GNNs (e.g. GCN or GAT layers).

N
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L

Normalizing Flows

Flow N N Inverse

/() (=)

= Normalizing flow estimates the density of graphs p(G) directly with an invertible and deterministic
mapping between the latent variables and the graphs via the change of variable theorem.

p(G) = p(z)

(%)

N
~

Alireza Gargoori Motlagh



=PrL

B Graph Generative Models

Normalizing Flows

Flow N N Inverse

/() (=)

= Normalizing flow estimates the density of graphs p(G) directly with an invertible and deterministic
mapping between the latent variables and the graphs via the change of variable theorem.

p(G) = p(z)

(%)

= Since the encoder f(G) needs to be invertible, the decoder is essentially f~1(z).

N
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B Graph Generative Models

Normalizing Flows

Flow N N Inverse

/() (=)

Normalizing flow estimates the density of graphs p(G) directly with an invertible and deterministic
mapping between the latent variables and the graphs via the change of variable theorem.

p(G) = p(z)

(%)

= Since the encoder f(G) needs to be invertible, the decoder is essentially f~1(z).

= Normalizing-flow-based models are usually trained by maximizing the log-likelihood over the
training data G.

N
©
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B Graph Generative Models

Generative Adversarial Networks

Training
set

Generator

fa(z)

Z |=>

(ba

GANSs consists of two main components:

Discriminator

fo(x)

o Generator f; for generating realistic graphs

O

Discriminator f,, for distinguishing between synthetic and real graphs.

Real

1

Fake

w
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B Graph Generative Models

L Generative Adversarial Networks

Training |
set () H—>D_ B Real
] 1scriminator
— fD (w)
R Generator __ s ] Fake
falz) IO
17

= GANSs consists of two main components:

o Generator f; for generating realistic graphs
o Discriminator f}, for distinguishing between synthetic and real graphs.

» The training objective is the following min-max game:

min n}ax Lean(fe, fp) = Egap@)10g fo(G)] + E,pizy [log(1 — fo(fe(2)))]

fa D

= This competition drives both networks to improve continuously, allowing GANs to
generate increasingly realistic data.

w
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L

Diffusion Models

Forward: q(x; | T¢—1)

=
Add noise
—_— —_— —_—  —
T U | €T z
P P P <nun
Denoise

Reverse: po(xi—1 | o¢)

The forward diffusion process constantly adds noise to the data sample x,, while the reverse
diffusion process recreates the true data sample from a Gaussian noise input x; ~ N(0, ).

w
N

Alireza Gargoori Motlagh



=Pr

B Graph Generative Models

L

Diffusion Models

Forward: q(x; | T¢—1)

=
Add noise
—_— —_— —_—  —
T U | €T z
P P P <nun
Denoise

Reverse: po(xi—1 | o¢)

= The forward diffusion process constantly adds noise to the data sample x,, while the reverse
diffusion process recreates the true data sample from a Gaussian noise input x; ~ N(0, ).

» Forward diffusion process:

(iBt | Ty 1) _N(iﬂt; vl—ﬂtwt 1y 5tI)a
q(z1.7 | TO) = qut|“’t 1

B: is a noise scheduler that controls the step size.

w
w
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=PFL  Diffusion Models

Forward: q(x; | T¢—1)

=
Add noise
—_— —_— —_—  —
T U | €T z
P P P <nun
Denoise

Reverse: po(xi—1 | o¢)

= The forward diffusion process constantly adds noise to the data sample x,, while the reverse
diffusion process recreates the true data sample from a Gaussian noise input x; ~ N(0, ).

» Forward diffusion process:
(iBt | Tt 1) _N(iﬂt; V1= Bz 1, 5tI)a

q(z11 | o) = qut|wt1

B: is a noise scheduler that controls the step size.

» Statistical Physics: Reverse diffusion process would also be gaussian if §; is small enough!

B Graph Generative Models

w
'y
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L

Diffusion Models

Forward: q(x; | T¢—1)

=
Add noise
—_— —_— —_—  —

T U | €T z
P P P <nun
Denoise

AT TTIT L M

Reverse: po(xi—1 | o¢)
Since q(x;_1|x;) is intractable, we learn a model to approximate these conditional probabilities.

po(Ti—1 | ) = N(@1—1; po(xe, 1), o (x4, 1))

w
(3]
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=PFL  Diffusion Models

Forward: q(x; | T¢—1)

=
Add noise
—_— —_— —_—  —

T U | €T z
P P P <nun
Denoise

AT TTIT L M

Reverse: po(xi—1 | o¢)
= Since q(x;_1|x;) is intractable, we learn a model to approximate these conditional probabilities.

pe(wt—l I mt) = N(mt—l; “9(wt)t)a Ea(mt?t))
» We use variational lower bound to maximize log likelihood:

q\T1.7 | o
- logpe(wo) S Eq(m1;T|m0) |:10g w]

pe(iBo:T)

B Graph Generative Models

q(z1.7 | Zo)
Lvip = Eq(zo.r) llog m] > —Eq(ay) log po (o)

w
(=]
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B Graph Generative Models

Sampling Strategies

Random Sampling: draws latent samples from the prior distribution, in
which the model learns to approximate the distribution of the observed
graphs.

-y

Sampling strategies

Random

Controllable

Sampler
z ~ p(2)

w
~
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B Graph Generative Models

Sampling Strategies

Random Sampling: draws latent samples from the prior distribution, in
which the model learns to approximate the distribution of the observed
graphs.

Controllable Sampling: samples new graphs with controls (i.e.
desired properties)

O

Disentangled sampling: factorizes the latent vector z with each

dimension z, focusing on one property p, , following the
disentanglement regularization that encourages the learnt latent
variables to be disentangled from each other.

Conditional sampling: introduces a conditional code c that
explicitly controls the property of generated graphs. In this case, the
final representation z is usually the concatenation of z and c.

—_—

Sampling strategies

Random

Controllable

Sampler
z ~p(z)

w
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B Graph Generative Models

Generation Strategies

The decoder transforms latent codes into graph structures, tackling challenges like the
discrete and high-dimensional nature of graph data. To address non-differentiability, two
decoding strategies are commonly used:

Generation strategies

0} O 0O
O = gom = Yo

Sequential generation

O O
- > (S 9 g

z

One-hot generation

Decoder

fo(G | 2)

w
©
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B Graph Generative Models

Generation Strategies

One-Shot Generation:

Generates the entire graph (adjacency matrix and optional node/edge features) in a single step.
- Advantages: Independent of node ordering, efficient for small graphs.

- Limitations: Requires predefined maximum nodes and scales poorly (O(N 2)) with graph size.

Sequential Generation:

Generates graphs step-by-step by sampling probabilistic node/edge matrices and relies on predefined
node ordering (BFS).

« Advantages: Flexible for unknown graph sizes and allows constraint checking during generation.
 Limitations: Accumulates errors over long sequences, causing discrepancies in large graphs.

Y
(=]
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B Graph Generative Models

Wrap-up

Node ordering

” pole | 2)

Decoder

(1) Auto-regressive models (2) Variational autoencoders

W |
I - p
set

" ot Discriminator
folx)

., Generator

fa(z)

=

(4) Generative adversarial networks

Deep generative models

Y, Encoder Sampler
W — reie) | — -

=

We studied different approaches for deep graph generative models.

— 0 Flow Inverse
i@%u’ f@ T %7 @ T

(3) Normalizing flows

Forward: q(zl |2, 1)

Addnmse
— —
o m“ s - 2
PR PREIPN
Denoise

Reverse: po(ei—1 | 1)

(5) Diffusion models

Sampling strategies
Random

Controllable

Generation strategies

One-hot generation

> Decoder > %OH
fa(G | 2)

£
[y

Alireza Gargoori Motlagh

We evaluated the possible strategies for encoding, sampling, and decoding for latent variable models.



Graph Generative Models:
Application for Biological Science

Illuminating protein space with a programmable
generative model

John B. Ingraham, Max Baranov, Zak Costello, Karl W. Barber, Wujie Wang, Ahmed Ismail, Vincent
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Research Background

Injection Sites Sectioning the Brain

"/ aSyn Preformed- .
Fibrils oo . o

VAN = .

Brain Connectome

Lewy Neurites

A AL ~T X
S A AMA L et 11 i B AR A N\
( )

I

|

s

Il

Il
¥ R { .

/ —— e

‘ . S g

{ “

PR
i

HexCer 40:1;02

MALDI-MSI

SM 42:2;02




A

CP Injection

Seeding aSyn

In silico

In vivo

aSyn Production
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Introduction to Graphs

Nodes (Vertices)
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* Graphs can represent various structures

* Can reveal hidden patterns and relationships



Graph Generative Models

Chen et al, 2019

* Definition: Models designed to
generate graphs that mimic real-
world structures.

* Capturing the patterns & relationship

* Synthetic graphs that maintain the
statistical properties
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Why Study Generative Models for Graphs?

Limited Data Availability
Generate synthetic graphs when real data is scarce or restricted

Drug Discovery
Design novel molecular structures with desired properties

(D Understanding Complex Systems
Model how networks form and evolve over time

Q Scientific Discovery
Explore possible configurations of complex networks

Predictions /
Simulations



Basics of Graph Generative Models

P aatalG)
e L th . . .
S Maximum Likelihood
Distribution
X7 Paaa(X) 6" = argmax oy, 108 pruodai(x | 6)
21108 Proger (X;;6°)
Model that generated
the observed sample X

f == Neural Network To be | %~ N(0:1)
Trained! x; = f(z; 0 )




Illuminating protein space with a programmable
generative model

John B. Ingraham, Max Baranov, Zak Costello, Karl W. Barber, Wujie Wang, Ahmed Ismail, Vincent

Frappier, Dana M. Lord, Christopher Ng-Thow-Hing, Erik R. Van Vlack, Shan Tie, Vincent Xue, Sarah C.

Cowles, Alan Leung, Joao V. Rodrigues, Claudio L. Morales-Perez, Alex M. Ayoub, Robin Green,
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Proteins: Element of Life

gl .

mino acid chain

CA2+* BOUND CALCYCLIN

Primary protein structure Tertiary protein structure

OO‘CQ"Q‘% m

Polymer Representation




Computational Protein Design

In silico design of

In silico design Wild-type “miniprotein binders”

Designing de novo proteins for
biological problems

Designing more robust enzymes
FGFR2_mb EGFRn_mb

Understand complex physical
interactions

. /

IL-7Ra_mb TGFB_mb
Koge et al., 2012 Cao etal., 2022 10



Diffusion Models

Midjourney
DALL-E 2
Denoising by Modeling

V\,,log ‘ZJ::V(|X(} 1;|:'v|_):] DL'I]\')i.\'iH}_.', I'JI: Vi :I
v C\O\'D"v" Vi k
g gt o
‘ Diffusion

| Vi p(xo) Smooth Denoising p(x1)

Diffusion of Joint
Distribution p(x;, v¢)

Smooth Diffusion

Generating images and other types Forward t=0.00
of data by gradually adding random Diffusion Process

noise to data and then learning to |

reverse this oy Velocity Ve

Nvidia Developer Web Site
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Chroma: a generative model for proteins and

protein complexes

Generative Model:
e Consider Joint Sequences

e Full 3D Structures of Proteins
* Diverse design constraints without retraining

Scaling law
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Cell volumé {ph)
Tsichlaki and FitzHarris, 2016
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* Multivariate Gaussian Distributions
* Enforce protein chain and R statistics
(Correlated Noise)

Diffusion time (NSNR) Distance statistics

. S . Residue Chain Monomer R, Complex R
esidue Gas g & E .
oY d . e DX . o N
. . i v w

\deal Chain } ‘?\ d*?\' ﬁ v v

“ AN -
V= ? * * F & w
o ? % »«3 y 4 @ v v v vV
R, ~ 2. X NO4 2



Fig. 1: Chroma is a generative model for proteins and protein complexes that combines structured diffusion
for protein backbones with scalable molecular neural networks for backbone synthesis and all-atom design.

a Collapsed Generation: reverse polymer diffusion _ Protein Design network _ All-atom
polymer complex ~ complex
system Training: forwards polymer diffusion backbone

X
b Noisy structure Predicted denoised structure C
X, Confidence-weighted X,(X,, 1) ‘ﬁme-dlependent prior + Tlme-deplendent conditioner(s)
predicted inter-residue geometries ‘ oglp(x)] oglp(ylx)
* Symmetry

Random graph Equivariant é&i Substructure

neural network geometry solver

s R ‘ Shape
ON) H'I:P Semantics

or \/
O(Nlog[N]) Time-dependent posterior

edges loglp,(x|y)]
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Supplementary Figure 4: Random graphs with distance-weighted attachment efficiently capture long-range context

Deterministic graph Random graphs Mixed graph

k-NN Uniform Exponential Inverse cubic 20 k-NN + 40 Inverse Cubic

Confidence-weighted
predicted inter-residue geometries

Random graph Equivariant
neural network geometry solver .
Edge propensity
— R p(Eij € G(x)|Djj(x)) o constant
o) Marginal distance propensity (uniform grid)
or . ;. (x)2
P(Dij(x)|€ij € G(x)) Dij(x)
O(NIog[N]) R '
edges

Long-range attachment J

Non-vanishing local attachment

Monotonic decreasing distance propensity

14



Fig. 1: Chroma is a generative model for proteins and protein complexes that combines structured diffusion
for protein backbones with scalable molecular neural networks for backbone synthesis and all-atom design.
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Supplementary Figure 2: Low-temperature sampling drives towards high-likelihood states with increased secondary
structure content.
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Fig. 2: Analysis of unconditional samples reveals diverse geometries that exhibit new higher-order
structures and refold in silico.

Chroma generates 100,000 single-chain proteins
and 20,000 protein complexes

ANTIBODY-ANTIGEN COMPLEX
(3HFM, PDB)
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Fig. 2: Analysis of unconditional samples reveals diverse geometries that exhibit new higher-order
structures and refold in silico.
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Fig. 3: Symmetry, substructure and shape conditioning enable geometric molecular programming.

Conditioners parameterize the protein design Quasilinear computation time
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Fig. 4: Protein structure classifiers and caption models can bias the sampling process
towards user-specified properties.
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Fig. 5: Experimental validation of Chroma-designed proteins.
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Fig. 5: Experimental validation of Chroma-designed proteins.
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Conclusion Remarks

Chroma can generate protein sequences:
* With arbitrary shapes and conditioned structures

* That s structurally stable and soluble
* While being computationally inexpensive

Generate:Cliroma

A generative model for =
protein design
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ChromaBackbone Hyperparameters

Category Hyperparameter Value in ChromaBackbone vO0 Value in ChromaBackbone v1
Diffusion Process Covariance Model Globular Monomer Globular Complex
Noise Schedule Log-linear SNR (-7,13.5) [62] Log-linear SNR (-7,13.5)
Graph Features Node Features Internal Coordinates Internal Coordinates
Edge Features Atogl di.stances, Atom directions, Atorp di'stances, Atom directions,
Chain distances, Transforms Chain distances, Transforms
Edges per Node, k 60 60
Number of Nearest Neighbor Edges 20 20
Number of Random Edges 40 40
Random Edge Type Inverse Cubic Inverse Cubic
Graph Neural Network  Number of GNN layers 12 12
Node Embedding Dimension 512 512
Edge Embedding Dimension 256 256
Node MLP Dimension 512 512
Edge MLP Dimension 128 128
Dropout p 0.1 0.1
Denoising Solver Inter-residue Parameterization Direct T;; prediction Update from T;; (x;)
Uncertainty Model Isotropic (1-parameter) Decoupled (2-parameter)
Number of Iterations 3 10
Post-Process Scaling A B
Loss Function Likelihood Loss ELBO ELBO
Auxilliary Losses ELBO-weighted MSE Degiobal> Diragment» Dij SE, T; i SE
Total Number of Parameters 18.6M 18.6M
Total Number of Training Steps 1.6M 1.8M
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The Loss Functions

« ELBO This is a pure likelihood loss, which is a weighted average squared error loss in
whitened space together with additional additive terms to account for normalization and
change of variables. It is measured in Nats per atom in Cartesian space and is comparable
across different diffusion models.

e +AuxLoss1 To the base ELBO loss, we add the ELBO-weighted unwhitened loss (Equation
1) that measures mean squared error in Cartesian space.

e +AuxLoss2 To the base ELBO loss, we add the SSNR-weighted global MSE loss, the SSNR-
weighted 7mer fragment MSE loss, the Distance MSE loss, and the Inter-residue Transform
MSE loss.
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