

## Graph Generative Models

Alireza Gargoori Motlagh



#### BSc:

**Electrical Engineering @ Sharif University of Technology** 

#### 1st Year PhD Student:

Computational and Quantitative Biology (EDCB) @ EPFL



**Laboratory of Brain Development and Biological Data Science** 

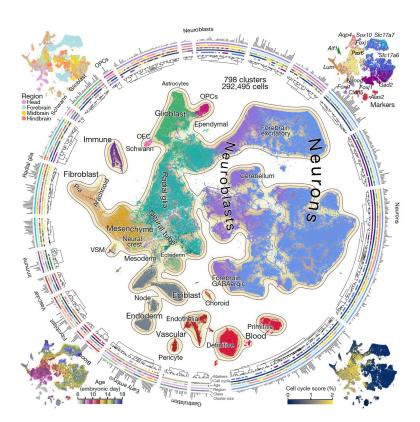
 ML-based method development for Single-Cell and Spatial Omics data

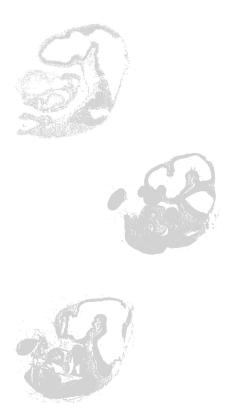
## **Background**

#### EPFL

## From Single-cell Atlas to Spatio-temporal Mapping

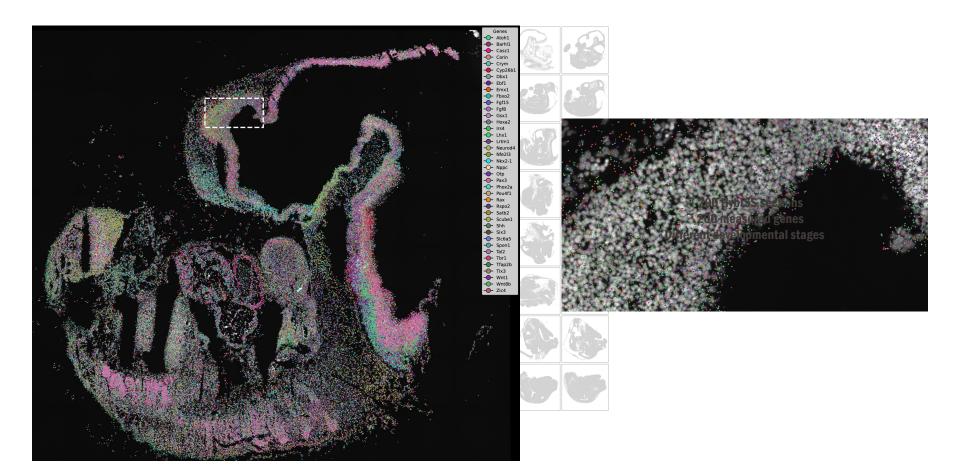






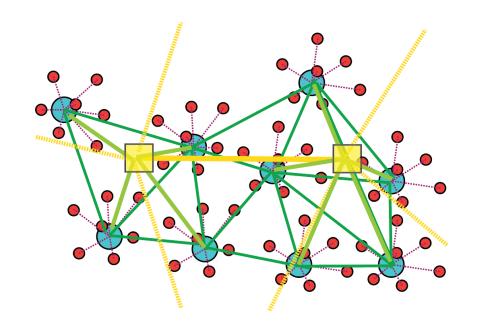
La Manno et al. Nature 2021

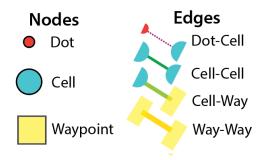
## **EPFL** HybISS as the starting point for cell type identification





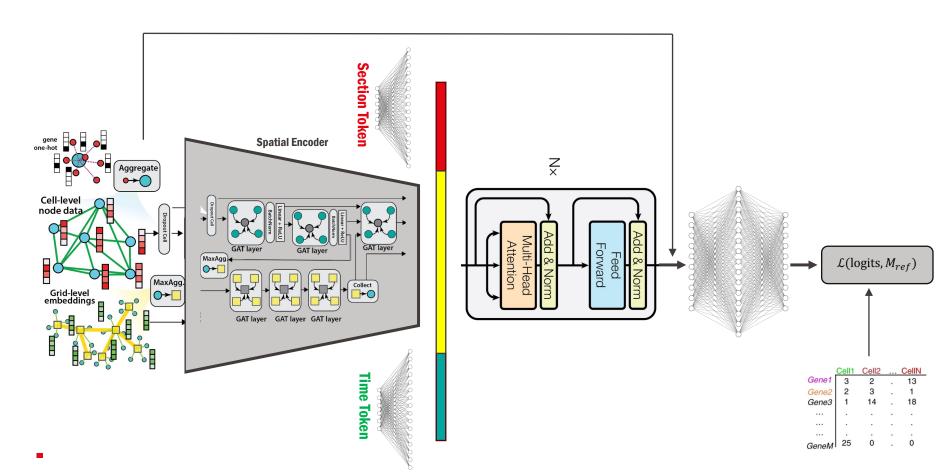
# Reasoning on the data structure

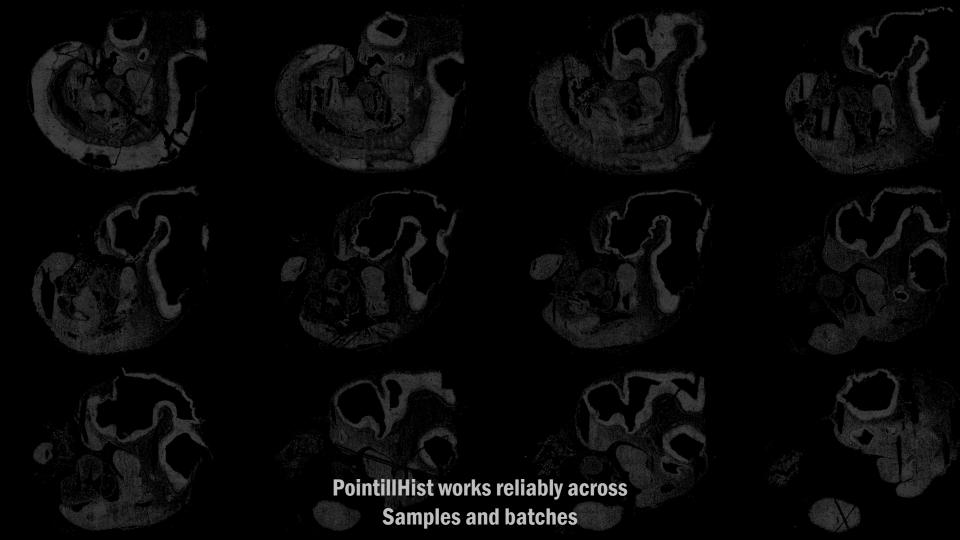






## **PointillHist Architecture**

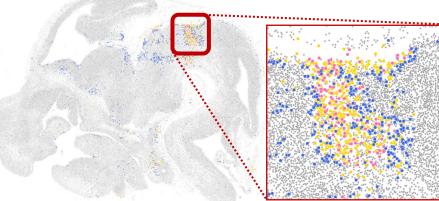




EPFL

## Connecting specific progenitors to progeny

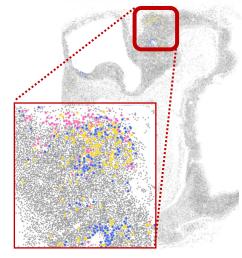
E12.5





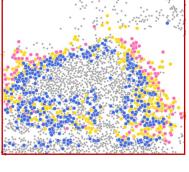
Neuroblast (Nbl415)

Neuroblast (Nbl424)



E11.5





**EPFL** 







## **Graph Generative Models**

A Survey on Deep Graph Generation: Methods and Application, LoG, PMLR

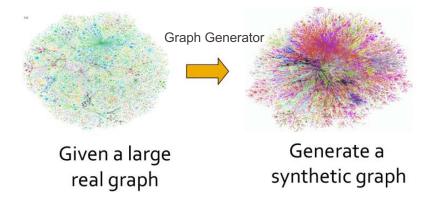
(https://arxiv.org/abs/2203.06714)



#### **Graph Generation Problem**

#### Problem:

Using a set of graphs, we want to generate graphs that resemble similarity to real graphs.



#### Applications:

Drug design, Material design, Program Synthesis, Social Network Modeling, etc.

## **Approaches**

#### Traditional Methods

- Generating graphs with similar statistical and hand-crafted features derived from real data.
- Oversimplifying assumption!

#### **Approaches**

#### Traditional Methods

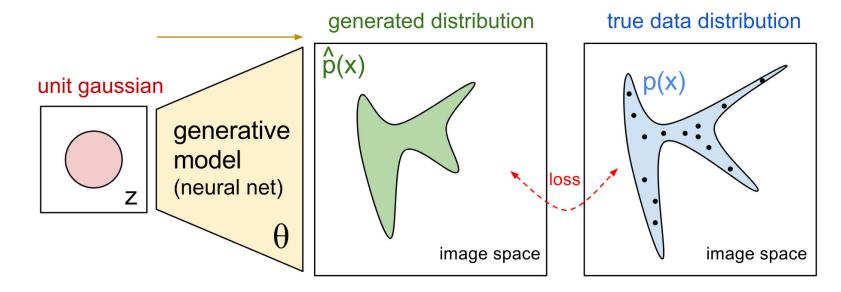
- Generating graphs with similar statistical and hand-crafted features derived from real data.
- Oversimplifying assumption!

#### Deep Graph Generative Models

- Learn the graph formation process from the data itself.
- Can capture complex relationships!

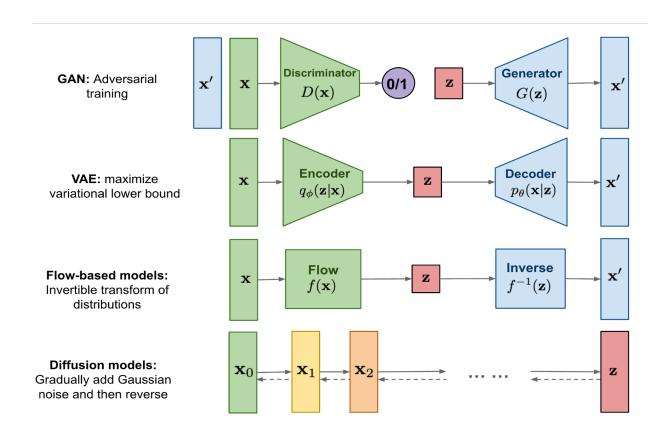
#### **Overview of Generative Models**

- Discriminative models focus on classifying or distinguishing between existing categories of data.
- Generative models, on the other hand, learn to replicate the underlying distribution of data and can generate new samples.



#### **EPFL**

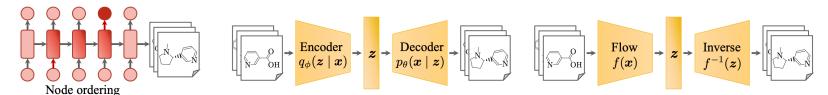
#### **Common Practices in Generative Models**



Speaker

#### **EPFL**

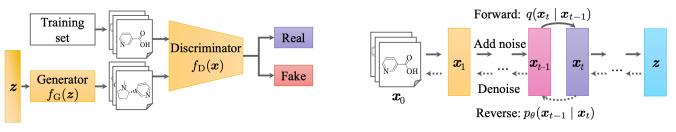
## Overview of **Deep Graph Generative Models**



(1) Auto-regressive models

(2) Variational autoencoders

(3) Normalizing flows



(4) Generative adversarial networks

(5) Diffusion models

#### **Deep Graph Generative Models**

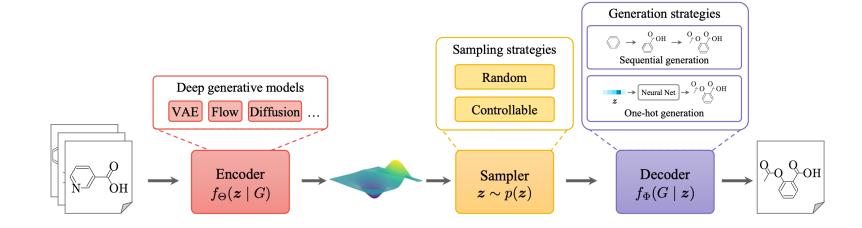
Encoder maps observed graphs into a stochastic distribution.

#### **Deep Graph Generative Models**

Sampler draws latent representations from that distribution.

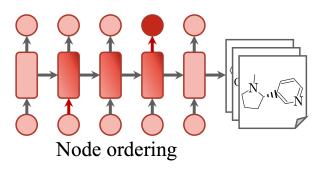
**EPFL** 

## **Deep Graph Generative Models**



Decoder receives latent codes and produces graphs.

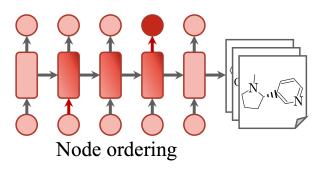
#### **Auto-Regressive Models**



AR models rely on the Chain Rule of Probability:

$$p(G^{\pi}) = \prod_{i=1}^{N} p(G_i^{\pi} \mid G_1^{\pi}, G_2^{\pi}, \cdots, G_{i-1}^{\pi}) = \prod_{i=1}^{N} p(G_i^{\pi} \mid G_{\leq i}^{\pi})$$

#### **Auto-Regressive Models**



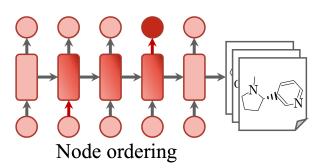
AR models rely on the Chain Rule of Probability:

$$p(G^{\pi}) = \prod_{i=1}^{N} p(G_i^{\pi} \mid G_1^{\pi}, G_2^{\pi}, \cdots, G_{i-1}^{\pi}) = \prod_{i=1}^{N} p(G_i^{\pi} \mid G_{< i}^{\pi})$$

The factorized distribution is learnt with Maximum Likelihood Estimation (MLE):

$$\theta^* = \arg\max_{\theta} E_{x \sim p_{data}} \log p_{model}(x \mid \theta)$$

## **Auto-Regressive Models**



AR models rely on the Chain Rule of Probability:

$$p(G^{\pi}) = \prod_{i=1}^{N} p(G_i^{\pi} \mid G_1^{\pi}, G_2^{\pi}, \dots, G_{i-1}^{\pi}) = \prod_{i=1}^{N} p(G_i^{\pi} \mid G_{< i}^{\pi})$$

The factorized distribution is learnt with Maximum Likelihood Estimation (MLE):

$$\theta^* = \arg\max_{\theta} E_{x \sim p_{data}} \log p_{model}(x \mid \theta)$$

Since AR works like sequential generation, applying AR models requires a pre-specified ordering  $\pi$  of nodes in the graph.

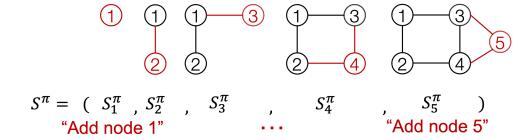
**EPFL** 

#### The sequence $S^{\pi}$ has **two levels** (S is a sequence of sequences):

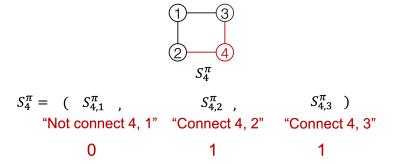
Node-level: add nodes, one at a time

**AR: GraphRNN** 

Edge-level: add edges between existing nodes



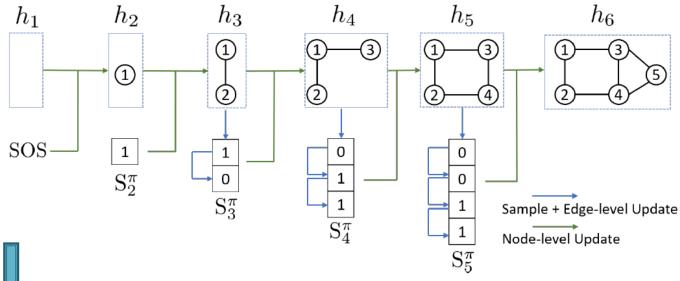
Each Node-level step is an edge-level sequence



## **GraphRNN Training**

## Node-level RNN generates the initial state for edge-level RNN

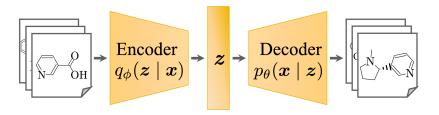






Edge-level RNN sequentially predict if the new node will connect to each of the previous node

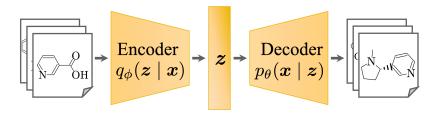
#### **Variational Autoencoders**



• VAEs estimate the p(G) by maximizing the Evidence Lower Bound (ELBO) as follows:

$$\mathcal{L}_{\text{VAE}} = \mathbb{E}_{z \sim q_{\phi}(\boldsymbol{z}|G)} \log(p_{\theta}(G \mid \boldsymbol{z})) - D_{\text{KL}}(q_{\phi}(\boldsymbol{z} \mid G) \parallel p_{\theta}(\boldsymbol{z})))$$

#### **Variational Autoencoders**

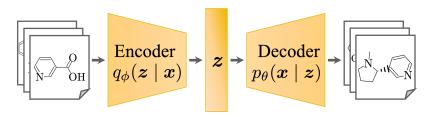


• VAEs estimate the p(G) by maximizing the Evidence Lower Bound (ELBO) as follows:

$$\mathcal{L}_{\text{VAE}} = \mathbb{E}_{z \sim q_{\phi}(\boldsymbol{z}|G)} \log(p_{\theta}(G \mid \boldsymbol{z})) - D_{\text{KL}}(q_{\phi}(\boldsymbol{z} \mid G) \parallel p_{\theta}(\boldsymbol{z})))$$

- The first term is the reconstruction objective. It represents the log-likelihood of the true data G under the reconstructed distribution  $p_{\theta}(G|z)$ .
- The second term acts as a regularizer, encouraging the distribution of latent variables  $q_{\phi}(z|G)$  to approximate a prior distribution p(z), often standard normal distribution.

#### **Variational Autoencoders**

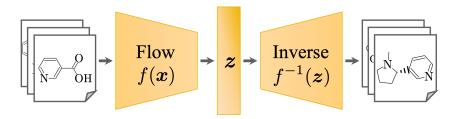


• VAEs estimate the p(G) by maximizing the Evidence Lower Bound (ELBO) as follows:

$$\mathcal{L}_{\text{VAE}} = \mathbb{E}_{z \sim q_{\phi}(\boldsymbol{z}|G)} \log(p_{\theta}(G \mid \boldsymbol{z})) - D_{\text{KL}}(q_{\phi}(\boldsymbol{z} \mid G) \parallel p_{\theta}(\boldsymbol{z})))$$

- The first term is the reconstruction objective. It represents the log-likelihood of the true data G under the reconstructed distribution  $p_{\theta}(G|z)$ .
- The second term acts as a regularizer, encouraging the distribution of latent variables  $q_{\phi}(z|G)$  to approximate a prior distribution p(z), often standard normal distribution.
- Encoder and Decoders are usually parameterized by GNNs (e.g. GCN or GAT layers).

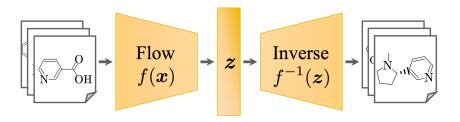
#### **Normalizing Flows**



Normalizing flow estimates the density of graphs p(G) directly with an invertible and deterministic mapping between the latent variables and the graphs via the change of variable theorem.

$$p(G) = p(z) \left| \det \left( \frac{\partial f^{-1}(G)}{\partial G} \right) \right|$$

#### **Normalizing Flows**

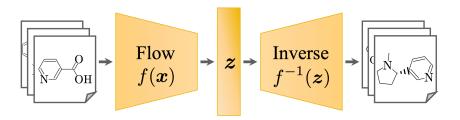


Normalizing flow estimates the density of graphs p(G) directly with an invertible and deterministic mapping between the latent variables and the graphs via the change of variable theorem.

$$p(G) = p(\boldsymbol{z}) \left| \det \left( \frac{\partial f^{-1}(G)}{\partial G} \right) \right|$$

• Since the encoder f(G) needs to be invertible, the decoder is essentially  $f^{-1}(z)$ .

## **Normalizing Flows**

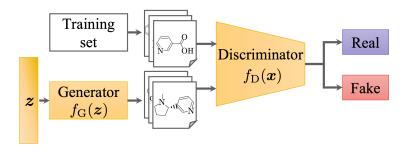


Normalizing flow estimates the density of graphs p(G) directly with an invertible and deterministic mapping between the latent variables and the graphs via the change of variable theorem.

$$p(G) = p(z) \left| \det \left( \frac{\partial f^{-1}(G)}{\partial G} \right) \right|$$

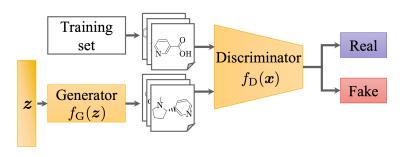
- Since the encoder f(G) needs to be invertible, the decoder is essentially  $f^{-1}(z)$ .
- Normalizing-flow-based models are usually trained by maximizing the log-likelihood over the training data G.

#### **Generative Adversarial Networks**



- GANs consists of two main components:
  - $\circ$  Generator  $f_G$  for generating realistic graphs
  - $\circ$  Discriminator  $f_D$  for distinguishing between synthetic and real graphs.

#### **Generative Adversarial Networks**

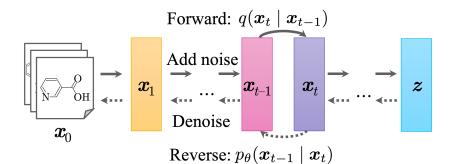


- GANs consists of two main components:
  - Generator  $f_G$  for generating realistic graphs
  - Discriminator  $f_D$  for distinguishing between synthetic and real graphs.
- The training objective is the following min-max game:

$$\min_{f_{\mathrm{G}}} \max_{f_{\mathrm{D}}} \mathcal{L}_{\mathrm{GAN}}(f_{\mathrm{G}}, f_{\mathrm{D}}) = \mathbb{E}_{G \sim p(G)}[\log f_{\mathrm{D}}(G)] + \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z})}[\log(1 - f_{\mathrm{D}}(f_{\mathrm{G}}(\boldsymbol{z})))]$$

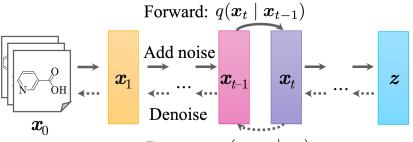
This competition drives both networks to improve continuously, allowing GANs to generate increasingly realistic data.

#### **Diffusion Models**



The forward diffusion process constantly adds noise to the data sample  $x_0$ , while the reverse diffusion process recreates the true data sample from a Gaussian noise input  $x_T \sim \mathcal{N}(0, I)$ .

#### **Diffusion Models**



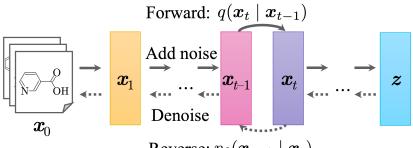
Reverse:  $p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t)$ 

- The forward diffusion process constantly adds noise to the data sample  $x_0$ , while the reverse diffusion process recreates the true data sample from a Gaussian noise input  $x_T \sim \mathcal{N}(0, I)$ .
- Forward diffusion process:

$$egin{aligned} q(oldsymbol{x}_t \mid oldsymbol{x}_{t-1}) &= \mathcal{N}(oldsymbol{x}_t; \, \sqrt{1-eta_t} oldsymbol{x}_{t-1}, \, eta_t oldsymbol{I}), \ q(oldsymbol{x}_{1:T} \mid oldsymbol{x}_0) &= \prod_{t=1}^T q(oldsymbol{x}_t \mid oldsymbol{x}_{t-1}), \end{aligned}$$

 $\beta_t$  is a noise scheduler that controls the step size.

#### **Diffusion Models**



Reverse:  $p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t)$ 

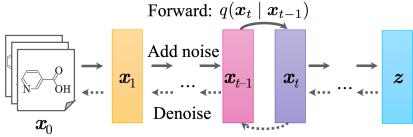
- The forward diffusion process constantly adds noise to the data sample  $x_0$ , while the reverse diffusion process recreates the true data sample from a Gaussian noise input  $x_T \sim \mathcal{N}(0, I)$ .
- Forward diffusion process:

$$egin{aligned} q(oldsymbol{x}_t \mid oldsymbol{x}_{t-1}) &= \mathcal{N}(oldsymbol{x}_t; \, \sqrt{1-eta_t} oldsymbol{x}_{t-1}, \, eta_t oldsymbol{I}), \ q(oldsymbol{x}_{1:T} \mid oldsymbol{x}_0) &= \prod_{t=1}^T q(oldsymbol{x}_t \mid oldsymbol{x}_{t-1}), \end{aligned}$$

 $\beta_t$  is a noise scheduler that controls the step size.

• *Statistical Physics:* Reverse diffusion process would also be gaussian if  $\beta_t$  is small enough!

#### **Diffusion Models**

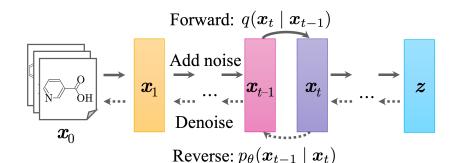


Reverse:  $p_{\theta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t)$ 

• Since  $q(x_{t-1}|x_t)$  is intractable, we learn a model to approximate these conditional probabilities.

$$p_{ heta}(oldsymbol{x}_{t-1} \mid oldsymbol{x}_t) = \mathcal{N}(oldsymbol{x}_{t-1}; \, oldsymbol{\mu}_{ heta}(oldsymbol{x}_t, t), \, oldsymbol{\Sigma}_{ heta}(oldsymbol{x}_t, t)).$$

#### **Diffusion Models**



Since  $q(x_{t-1}|x_t)$  is intractable, we learn a model to approximate these conditional probabilities.

$$p_{ heta}(\boldsymbol{x}_{t-1} \mid \boldsymbol{x}_t) = \mathcal{N}(\boldsymbol{x}_{t-1}; \, \boldsymbol{\mu}_{ heta}(\boldsymbol{x}_t, t), \, \boldsymbol{\Sigma}_{ heta}(\boldsymbol{x}_t, t)).$$

We use variational lower bound to maximize log likelihood:

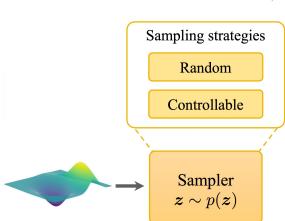
$$-\log p_{ heta}(oldsymbol{x}_0) \leq \mathbb{E}_{q(oldsymbol{x}_{1:T} \mid oldsymbol{x}_0)} \left[\log rac{q(oldsymbol{x}_{1:T} \mid oldsymbol{x}_0)}{p_{ heta}(oldsymbol{x}_{0:T})}
ight]$$

$$\mathcal{L}_{ ext{VLB}} = \mathbb{E}_{q(oldsymbol{x}_{0:T})} \left[ \log rac{q(oldsymbol{x}_{1:T} \mid oldsymbol{x}_0)}{p_{ heta}(oldsymbol{x}_{0:T})} 
ight] \geq -\mathbb{E}_{q(oldsymbol{x}_0)} \log p_{ heta}(oldsymbol{x}_0)$$

Alireza Gargoori Motlagh

### **Sampling Strategies**

**Random Sampling:** draws latent samples from the prior distribution, in which the model learns to approximate the distribution of the observed graphs.



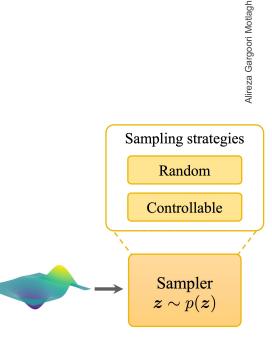
### **Sampling Strategies**

**Random Sampling:** draws latent samples from the prior distribution, in which the model learns to approximate the distribution of the observed graphs.

**Controllable Sampling:** samples new graphs with controls (i.e. desired properties)

*Disentangled sampling:* factorizes the latent vector  $\mathbf{z}$  with each dimension  $z_n$  focusing on one property  $p_n$ , following the disentanglement regularization that encourages the learnt latent variables to be disentangled from each other.

 $\circ$  **Conditional sampling:** introduces a conditional code c that explicitly controls the property of generated graphs. In this case, the final representation  $\hat{z}$  is usually the concatenation of z and c.

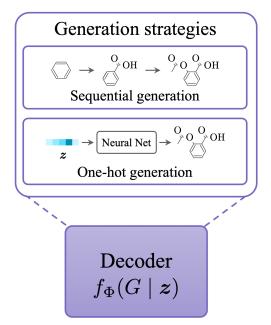


Graph Generative Models

Alireza Gargoori Motlagh

### **Generation Strategies**

The decoder transforms latent codes into graph structures, tackling challenges like the discrete and high-dimensional nature of graph data. To address non-differentiability, two decoding strategies are commonly used:



### **Generation Strategies**

#### **One-Shot Generation:**

Generates the entire graph (adjacency matrix and optional node/edge features) in a single step.

- Advantages: Independent of node ordering, efficient for small graphs.
- Limitations: Requires predefined maximum nodes and scales poorly  $(O(N^2))$  with graph size.

#### **Sequential Generation:**

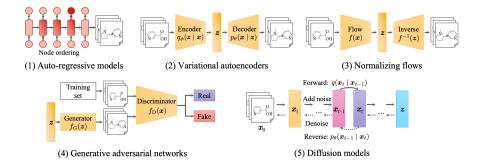
Generates graphs step-by-step by sampling probabilistic node/edge matrices and relies on predefined node ordering (BFS).

- Advantages: Flexible for unknown graph sizes and allows constraint checking during generation.
- Limitations: Accumulates errors over long sequences, causing discrepancies in large graphs.

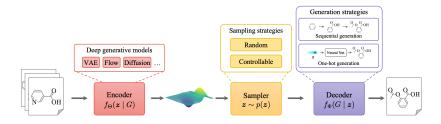
Alireza Gargoori Motlagh

### Wrap-up

We studied different approaches for deep graph generative models.



• We evaluated the possible strategies for encoding, sampling, and decoding for latent variable models.



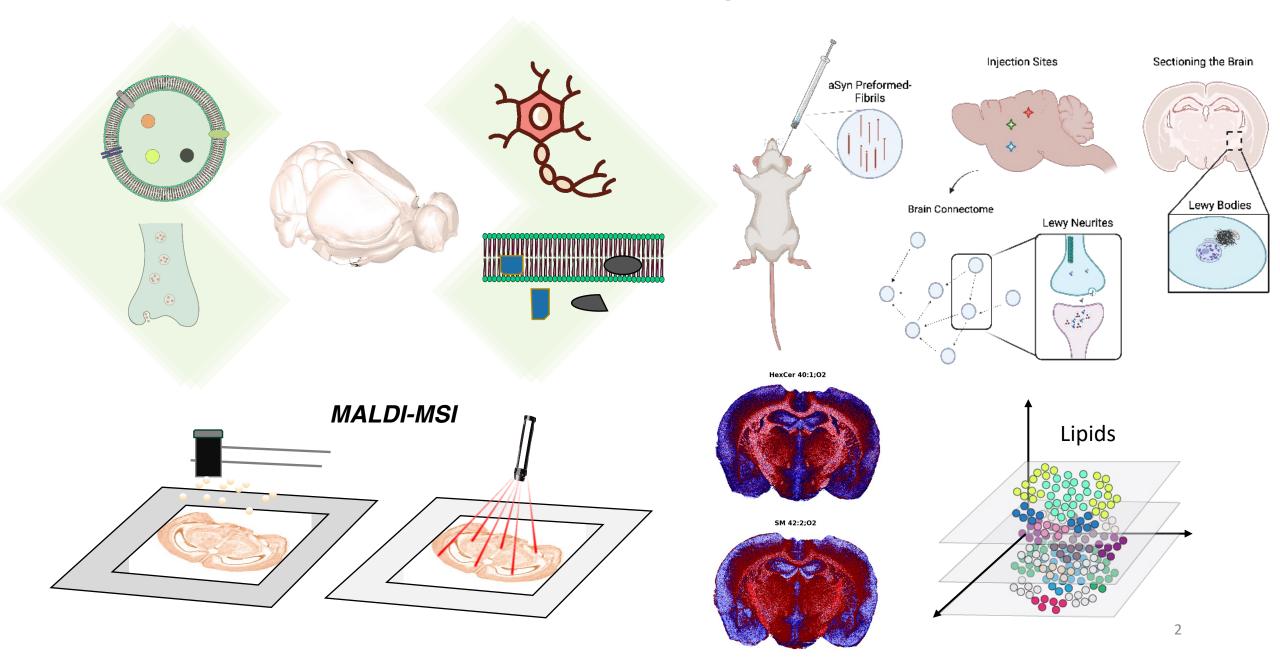
# Graph Generative Models: Application for Biological Science

# Illuminating protein space with a programmable generative model

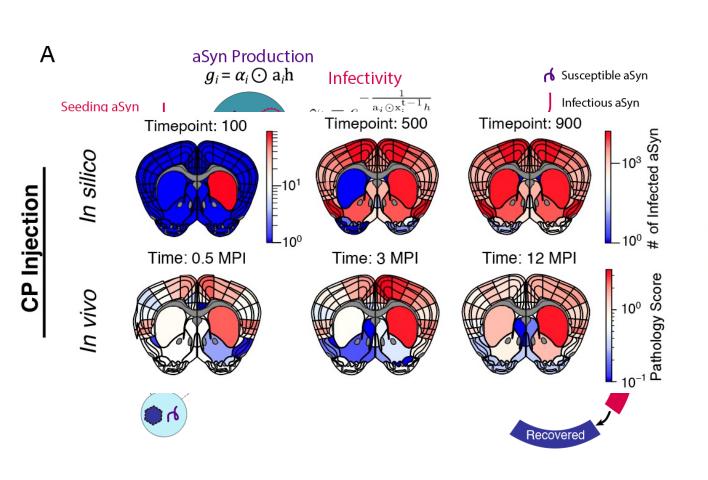
John B. Ingraham, Max Baranov, Zak Costello, Karl W. Barber, Wujie Wang, Ahmed Ismail, Vincent Frappier, Dana M. Lord, Christopher Ng-Thow-Hing, Erik R. Van Vlack, Shan Tie, Vincent Xue, Sarah C. Cowles, Alan Leung, João V. Rodrigues, Claudio L. Morales-Perez, Alex M. Ayoub, Robin Green, Katherine Puentes, Frank Oplinger, Nishant V. Panwar, Fritz Obermeyer, Adam R. Root, Andrew L. Beam, ... Gevorg Grigoryan → Show authors

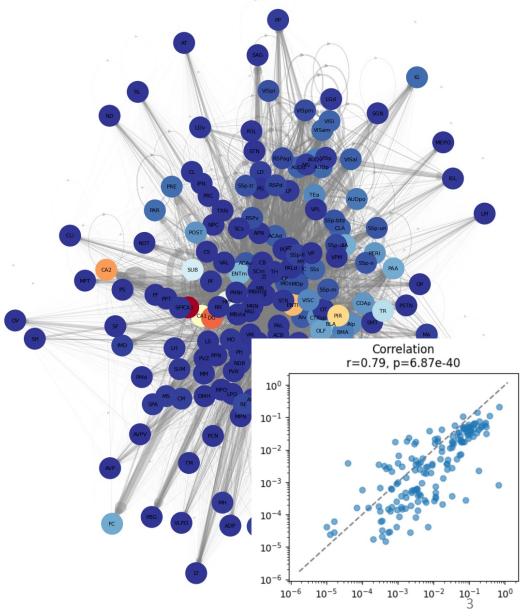
Ali Goktug Attar
PhD Student @ EDCB
La Manno Lab
EE-626

# Research Background

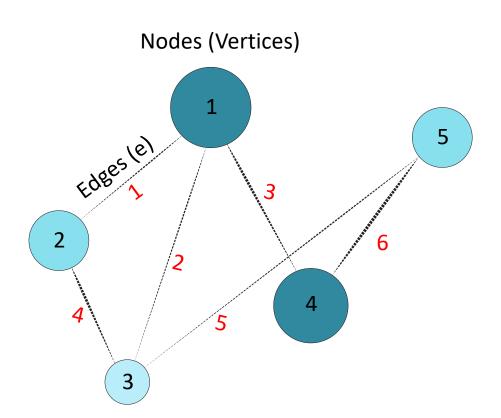


# Modelling Approaches





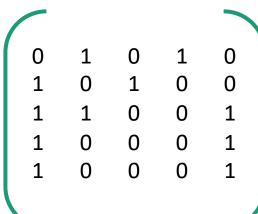
# Introduction to Graphs



$$G = \{V, E\}$$

$$V = \{v1, ..., v_N\}$$

$$E = \{e1, ..., e_M\}$$



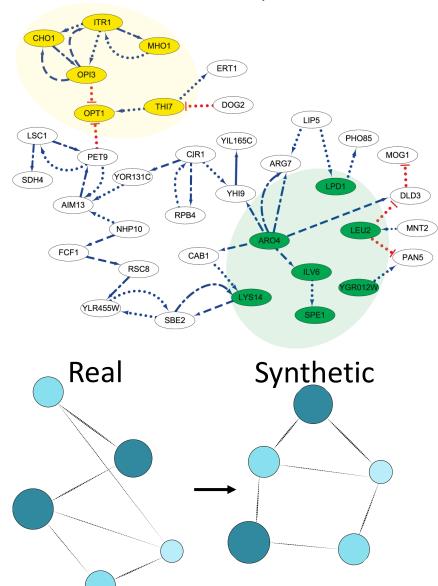
- Graphs can represent various structures
- Can reveal hidden patterns and relationships

# **Graph Generative Models**

• **Definition**: Models designed to generate graphs that mimic realworld structures.

Capturing the patterns & relationship

• Synthetic graphs that maintain the statistical properties



Chen et al, 2019

### Why Study Generative Models for Graphs?



#### **Limited Data Availability**

Generate synthetic graphs when real data is scarce or restricted



#### **Drug Discovery**

Design novel molecular structures with desired properties

Predictions / Simulations

# Insights / Discoveries



#### **Understanding Complex Systems**

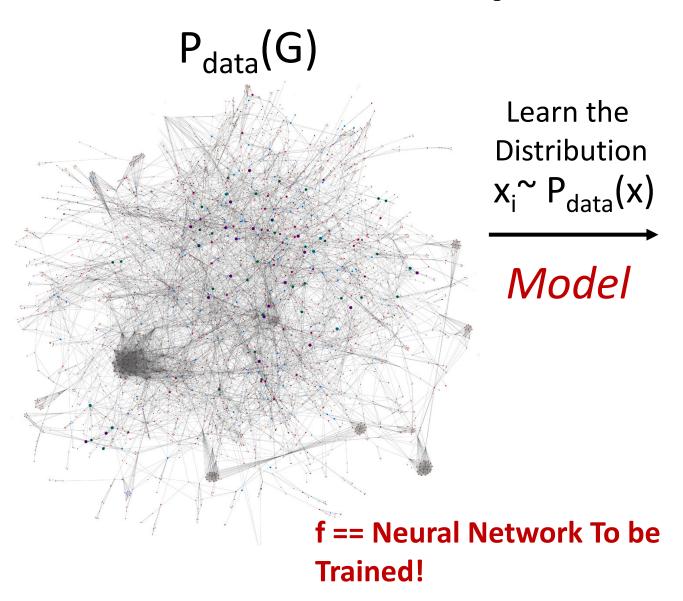
Model how networks form and evolve over time



#### **Scientific Discovery**

Explore possible configurations of complex networks

# **Basics of Graph Generative Models**

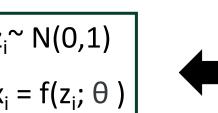


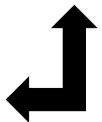
### **Maximum Likelihood**

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathbb{E}_{x \sim p_{ ext{data}}} \log p_{ ext{model}}(oldsymbol{x} \mid oldsymbol{ heta})$$

$$\sum_{ ext{l}} \log p_{ ext{model}}(oldsymbol{x}_{ ext{i}}; oldsymbol{ heta}^*)$$

Model that generated the observed sample X

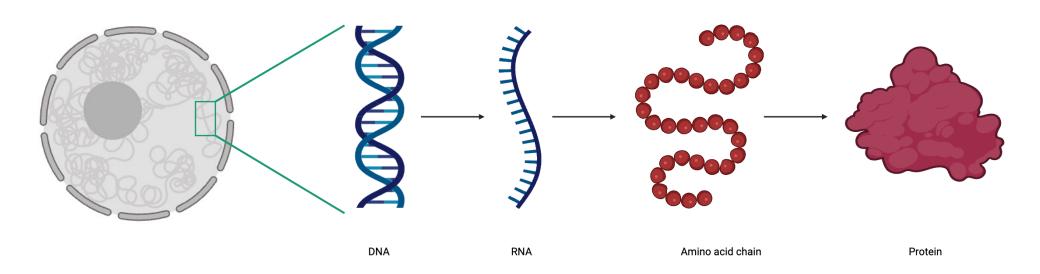




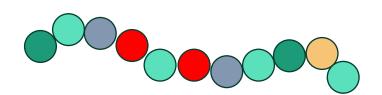
# Illuminating protein space with a programmable generative model

John B. Ingraham, Max Baranov, Zak Costello, Karl W. Barber, Wujie Wang, Ahmed Ismail, Vincent
Frappier, Dana M. Lord, Christopher Ng-Thow-Hing, Erik R. Van Vlack, Shan Tie, Vincent Xue, Sarah C.
Cowles, Alan Leung, João V. Rodrigues, Claudio L. Morales-Perez, Alex M. Ayoub, Robin Green,
Katherine Puentes, Frank Oplinger, Nishant V. Panwar, Fritz Obermeyer, Adam R. Root, Andrew L. Beam,
... Gevorg Grigoryan → Show authors

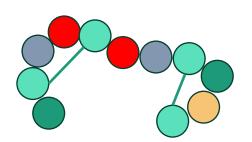
# Proteins: Element of Life



Primary protein structure



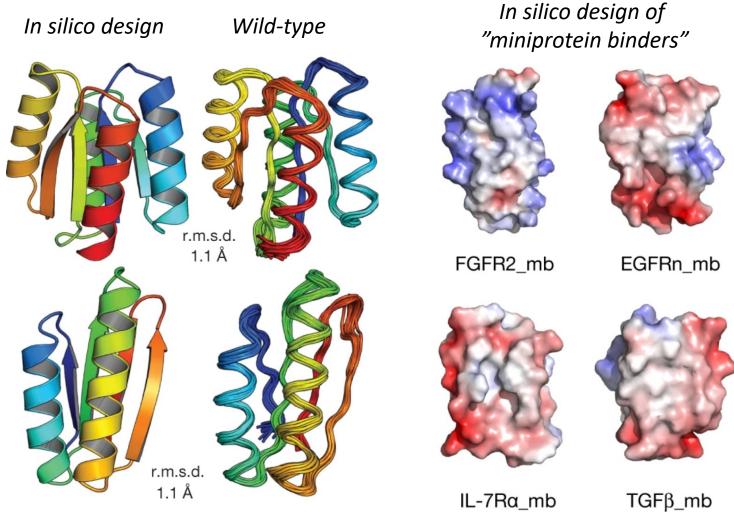
Tertiary protein structure



CA<sup>2+</sup> BOUND CALCYCLIN



### Computational Protein Design



Designing de novo proteins for biological problems

**Designing more robust enzymes** 

**Understand complex physical interactions** 

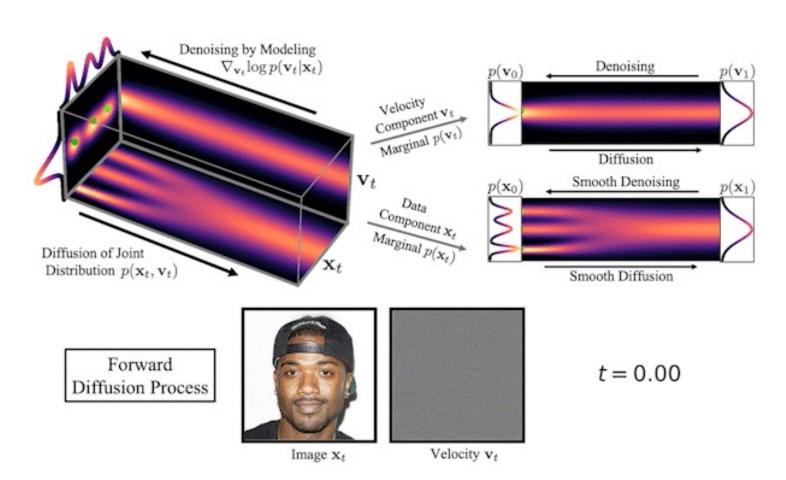
Koge et al., 2012 Cao et al., 2022

# Diffusion Models

### Midjourney DALL-E 2



Generating images and other types of data by gradually adding random noise to data and then learning to reverse this



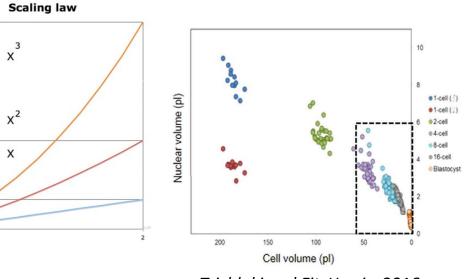
Nvidia Developer Web Site

## Chroma: a generative model for proteins and protein complexes

#### Generative Model:

Length

- Consider Joint Sequences
- Full 3D Structures of Proteins
- Diverse design constraints without retraining



Tsichlaki and FitzHarris, 2016

- Multivariate Gaussian Distributions
  - Enforce protein chain and R<sub>a</sub> statistics (Correlated Noise)

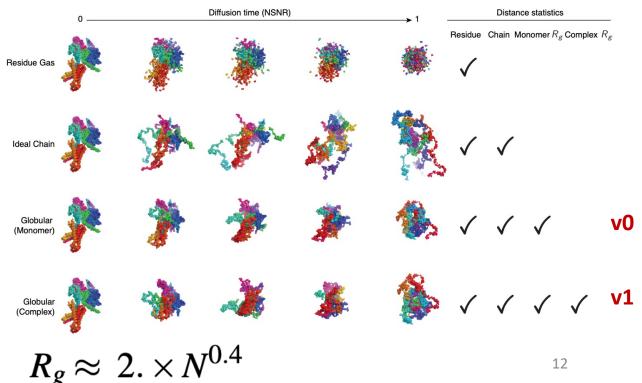
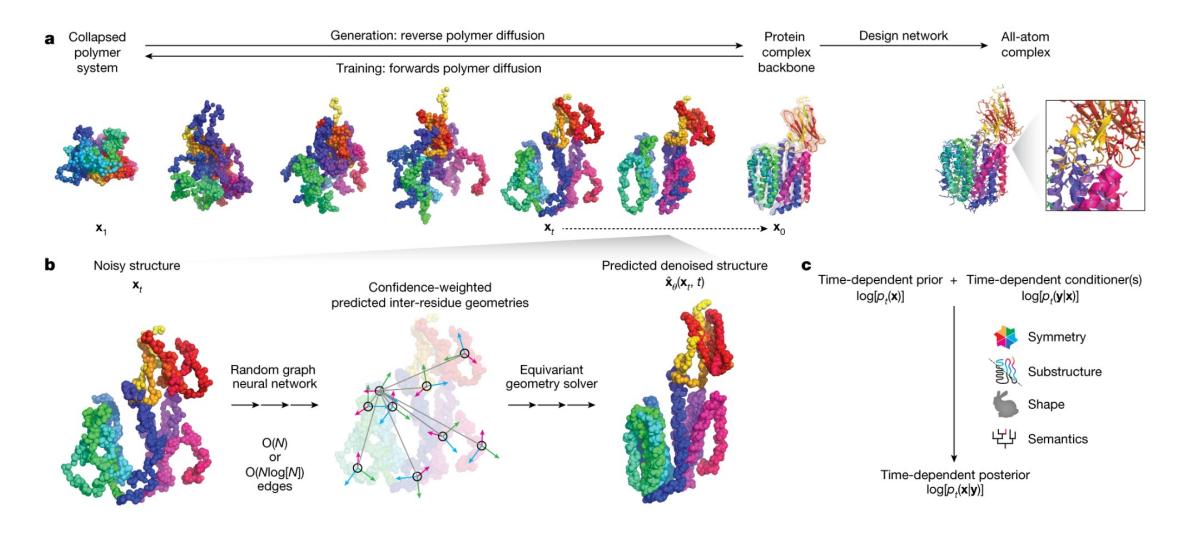


Fig. 1: Chroma is a generative model for proteins and protein complexes that combines structured diffusion for protein backbones with scalable molecular neural networks for backbone synthesis and all-atom design.



### Supplementary Figure 4: Random graphs with distance-weighted attachment efficiently capture long-range context

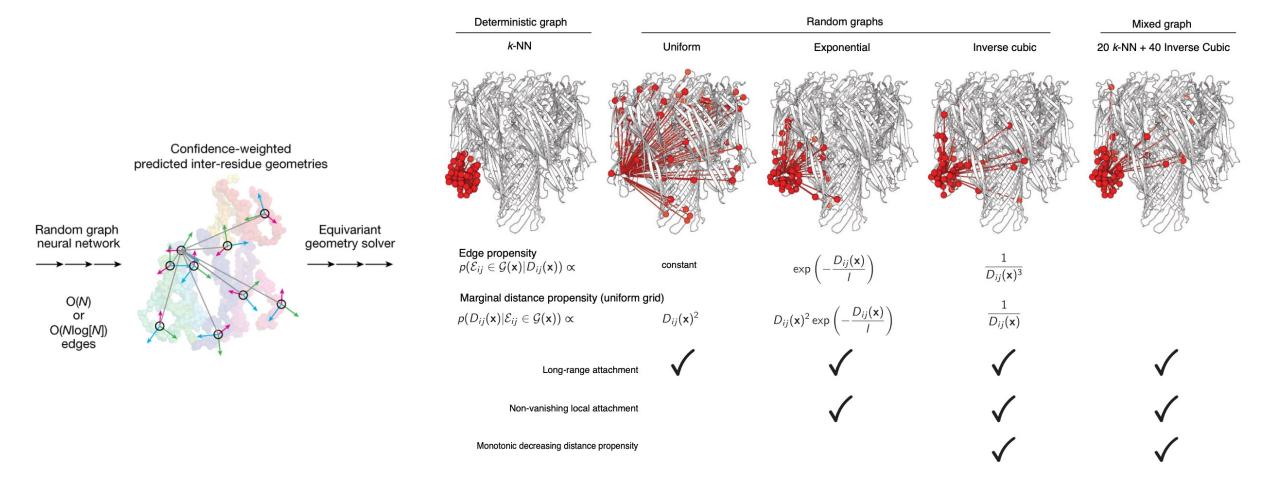
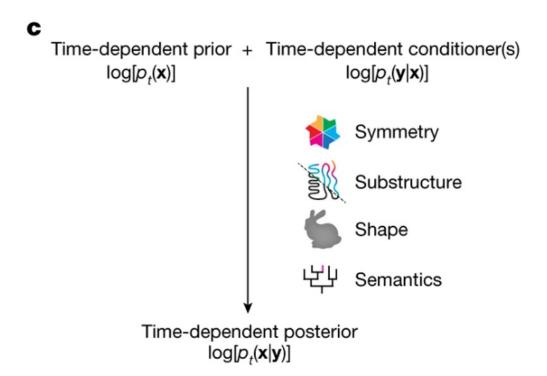
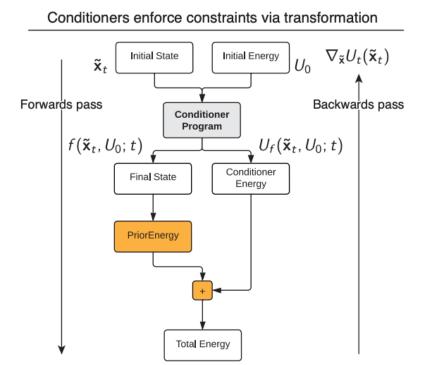


Fig. 1: Chroma is a generative model for proteins and protein complexes that combines structured diffusion for protein backbones with scalable molecular neural networks for backbone synthesis and all-atom design.

Conditioning Framework: Allows control over generated properties



### Bayes' theorem for score functions



Supplementary Figure 2: Low-temperature sampling drives towards high-likelihood states with increased secondary structure content.

### Less random noise in each denoising step, more conservative

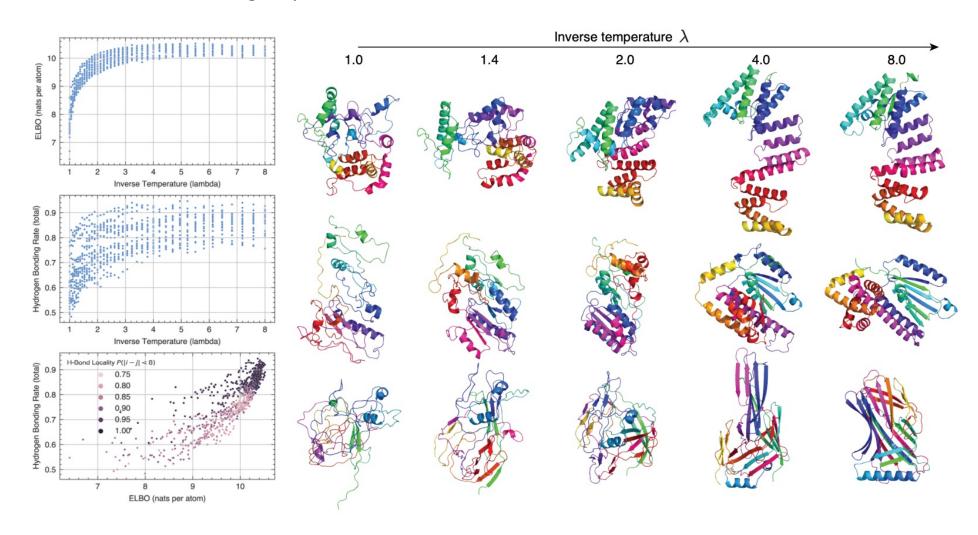
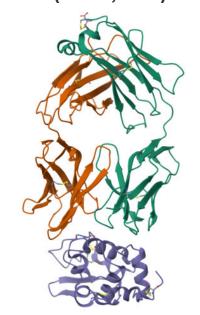


Fig. 2: Analysis of unconditional samples reveals diverse geometries that exhibit new higher-order structures and refold in silico.

Chroma generates 100,000 single-chain proteins and 20,000 protein complexes

ANTIBODY-ANTIGEN COMPLEX (3HFM, PDB)



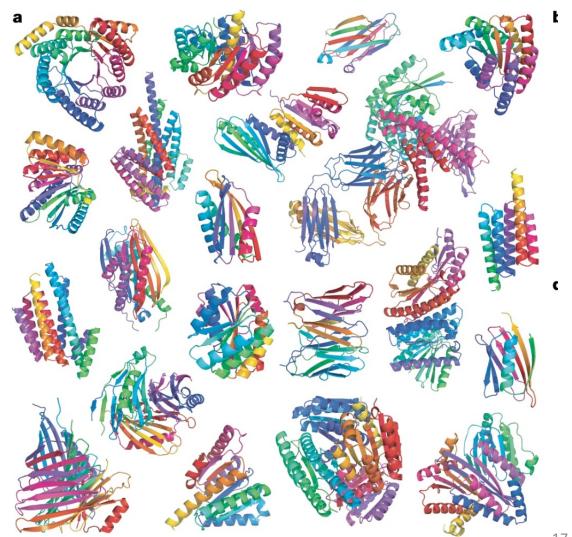


Fig. 2: Analysis of unconditional samples reveals diverse geometries that exhibit new higher-order structures and refold in silico.

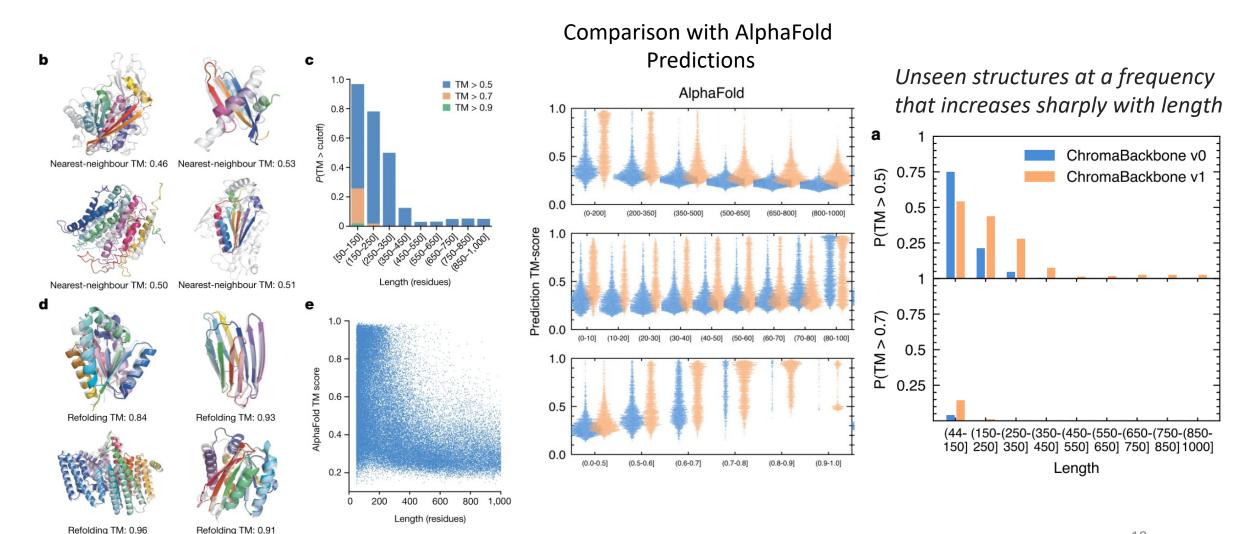


Fig. 3: Symmetry, substructure and shape conditioning enable geometric molecular programming.

Conditioners parameterize the protein design

Quasilinear computation time

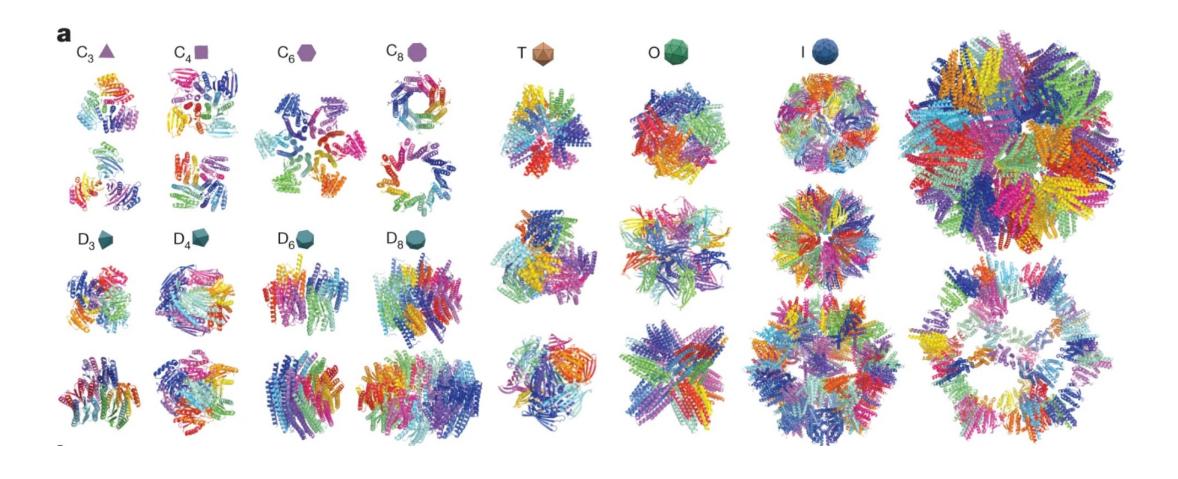


Fig. 3: Symmetry, substructure, and shape conditioning enable geometric molecular programming.

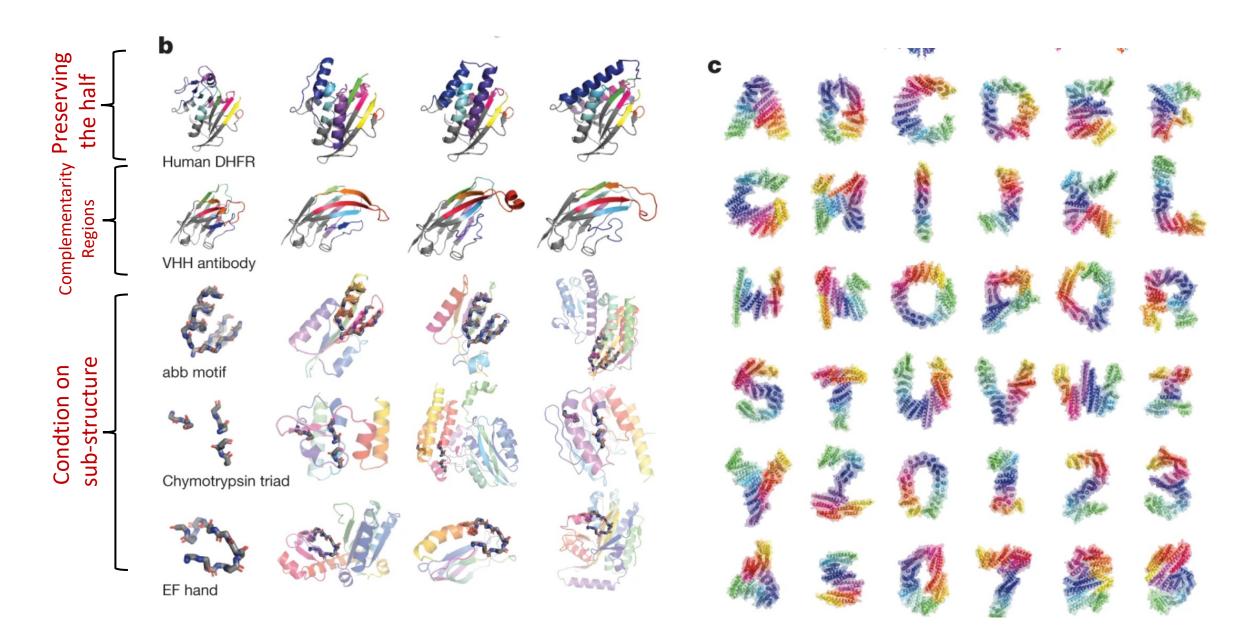


Fig. 4: Protein structure classifiers and caption models can bias the sampling process towards user-specified properties.

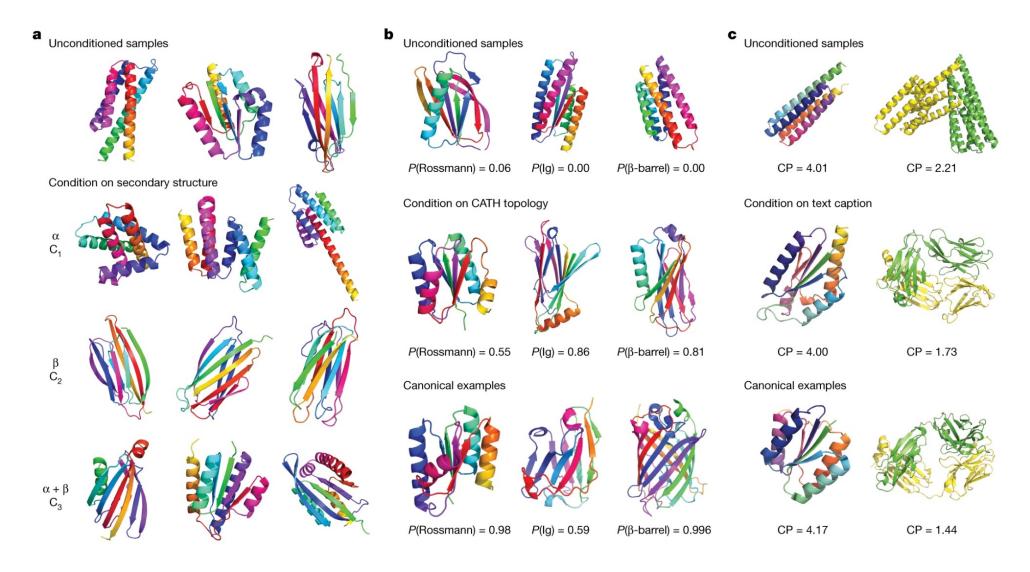
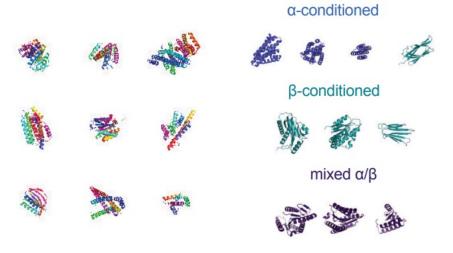
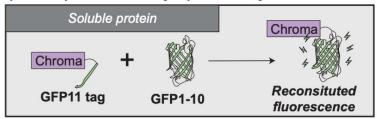


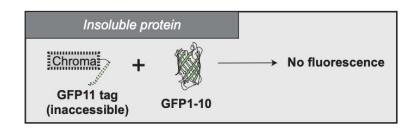
Fig. 5: Experimental validation of Chroma-designed proteins.

#### Secondary structure conditional designs.



#### Split-GFP protein solubility reporter assay:





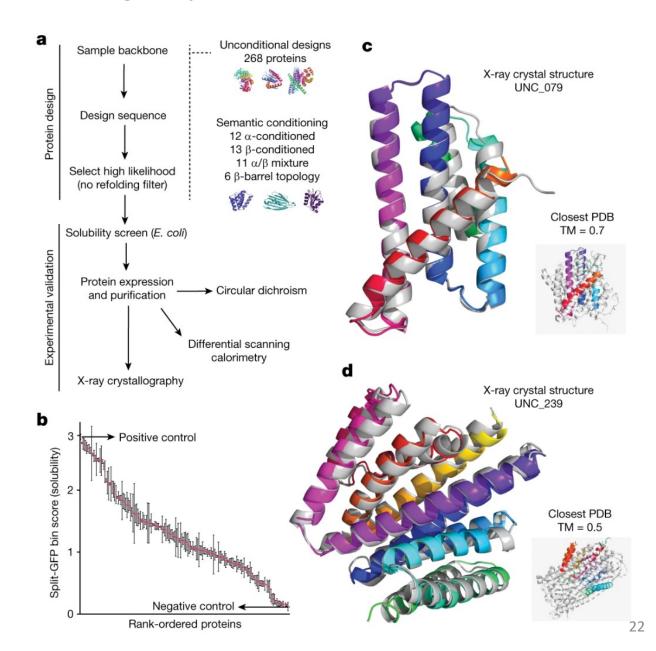
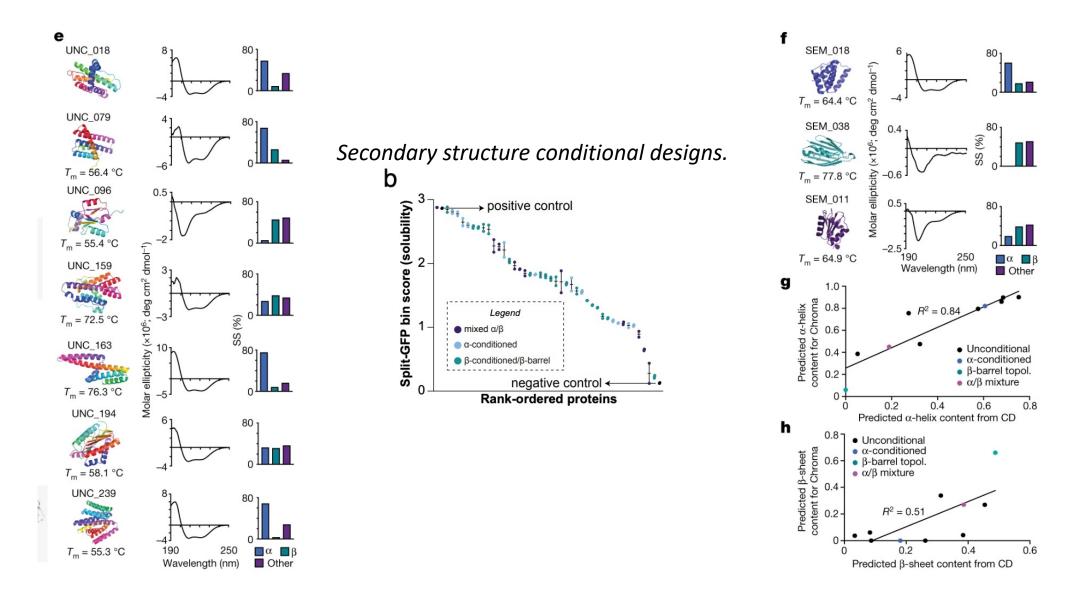


Fig. 5: Experimental validation of Chroma-designed proteins.



### **Conclusion Remarks**

Chroma can generate protein sequences:

- With arbitrary shapes and conditioned structures
- That is structurally stable and soluble
- While being computationally inexpensive



# Thank you!



# ChromaBackbone Hyperparameters

| Category                       | Hyperparameter                   | Value in ChromaBackbone v0       | Value in ChromaBackbone v1                                                                           |
|--------------------------------|----------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------|
| Diffusion Process              | Covariance Model                 | Globular Monomer                 | Globular Complex                                                                                     |
|                                | Noise Schedule                   | Log-linear SNR (-7,13.5) [62]    | Log-linear SNR (-7,13.5)                                                                             |
| Graph Features                 | Node Features                    | Internal Coordinates             | Internal Coordinates                                                                                 |
|                                | Edge Features                    | Atom distances, Atom directions, | Atom distances, Atom directions,                                                                     |
|                                |                                  | Chain distances, Transforms      | Chain distances, Transforms                                                                          |
|                                | Edges per Node, k                | 60                               | 60                                                                                                   |
|                                | Number of Nearest Neighbor Edges | 20                               | 20                                                                                                   |
|                                | Number of Random Edges           | 40                               | 40                                                                                                   |
|                                | Random Edge Type                 | Inverse Cubic                    | Inverse Cubic                                                                                        |
| Graph Neural Network           | Number of GNN layers             | 12                               | 12                                                                                                   |
|                                | Node Embedding Dimension         | 512                              | 512                                                                                                  |
|                                | Edge Embedding Dimension         | 256                              | 256                                                                                                  |
|                                | Node MLP Dimension               | 512                              | 512                                                                                                  |
|                                | Edge MLP Dimension               | 128                              | 128                                                                                                  |
|                                | Dropout p                        | 0.1                              | 0.1                                                                                                  |
| Denoising Solver               | Inter-residue Parameterization   | Direct $T_{ij}$ prediction       | Update from $T_{ij}(\mathbf{x}_t)$                                                                   |
|                                | Uncertainty Model                | Isotropic (1-parameter)          | Decoupled (2-parameter)                                                                              |
|                                | Number of Iterations             | 3                                | 10                                                                                                   |
|                                | Post-Process Scaling             | A                                | В                                                                                                    |
| Loss Function                  | Likelihood Loss                  | ELBO                             | ELBO                                                                                                 |
|                                | Auxilliary Losses                | ELBO-weighted MSE                | $\mathcal{D}_{	ext{global}}, \mathcal{D}_{	ext{fragment}}, D_{ij} 	ext{ SE}, \hat{T}_{ij} 	ext{ SE}$ |
| Total Number of Parameters     |                                  | 18.6M                            | 18.6M                                                                                                |
| Total Number of Training Steps |                                  | 1.6M                             | 1.8M                                                                                                 |

### The Loss Functions

- ELBO This is a pure likelihood loss, which is a weighted average squared error loss in whitened space together with additional additive terms to account for normalization and change of variables. It is measured in Nats per atom in Cartesian space and is comparable across different diffusion models.
- +AuxLoss1 To the base ELBO loss, we add the ELBO-weighted unwhitened loss (Equation 1) that measures mean squared error in Cartesian space.
- +AuxLoss2 To the base ELBO loss, we add the SSNR-weighted global MSE loss, the SSNR-weighted 7mer fragment MSE loss, the Distance MSE loss, and the Inter-residue Transform MSE loss.