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§ ML-based method development for Single-Cell 
and Spatial Omics data

Laboratory of Brain Development and Biological Data Science



From Single-cell Atlas to 
Spatio-temporal Mapping

La Manno et al. Nature 2021



HybISS as the starting point for cell type identification

~ 200 HybISS sections
~ 200 measured genes

Different developmental stages



Reasoning
on the data

structure
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PointillHist Architecture



PointillHist works reliably across
Samples and batches



E11.5

E12.5

Radial glia (RglDD)

Neuroblast (Nbl415)

Neuroblast (Nbl424)

Connecting specific 
progenitors to progeny



Graph Generative Models

A Survey on Deep Graph Generation: Methods 
and Application, LoG, PMLR
(https://arxiv.org/abs/2203.06714)
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10Graph Generation Problem

§ Problem:
Using a set of graphs, we want to generate graphs that resemble similarity to real graphs. 

Graph Generator

§ Applications:
Drug design, Material design, Program Synthesis, Social Network Modeling, etc.
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§ Traditional Methods

o Generating graphs with similar statistical and hand-crafted features derived 
from real data.

o Oversimplifying assumption!
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§ Traditional Methods

o Generating graphs with similar statistical and hand-crafted features derived 
from real data.

o Oversimplifying assumption!

§ Deep Graph Generative Models

o Learn the graph formation process from the data itself.
o Can capture complex relationships!



Overview of Generative Models
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§ Discriminative models focus on classifying or distinguishing between existing categories of 
data.

§ Generative models, on the other hand, learn to replicate the underlying distribution of data and 
can generate new samples.



Common Practices in Generative Models
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Overview of 
Deep Graph Generative Models
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Deep Graph Generative Models
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Encoder maps observed graphs into a stochastic distribution.



Deep Graph Generative Models
G

ra
ph

 G
en

er
at

iv
e 

M
od

el
s

Al
ire

za
 G

ar
go

or
i M

ot
la

gh

17

Sampler draws latent representations from that distribution.



Deep Graph Generative Models
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Decoder receives latent codes and produces graphs. 



Auto-Regressive Models
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§ AR models rely on the Chain Rule of Probability:



Auto-Regressive Models
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§ AR models rely on the Chain Rule of Probability:

§ The factorized distribution is learnt with Maximum Likelihood Estimation (MLE):



Auto-Regressive Models
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§ Since AR works like sequential generation, applying AR models requires a pre-specified 
ordering π of nodes in the graph. 

§ AR models rely on the Chain Rule of Probability:

§ The factorized distribution is learnt with Maximum Likelihood Estimation (MLE):



AR: GraphRNN
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The sequence 𝑆! has two levels (𝑆 is a sequence of sequences): 
§ Node-level: add nodes, one at a time
§ Edge-level: add edges between existing nodes 

§ Each Node-level step is an edge-level sequence 



GraphRNN Training
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Variational Autoencoders
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§ VAEs estimate the 𝑝(𝐺) by maximizing the Evidence Lower Bound (ELBO) as follows:



Variational Autoencoders
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§ The first term is the reconstruction objective.  It represents the log-likelihood of the true data 
𝐺 under the reconstructed distribution 𝑝! 𝐺 𝑧 .

§ The second term acts as a regularizer, encouraging the distribution of latent variables 
𝑞" 𝑧 𝐺 to approximate a prior distribution 𝑝(𝑧), often standard normal distribution.

§ VAEs estimate the 𝑝(𝐺) by maximizing the Evidence Lower Bound (ELBO) as follows:



Variational Autoencoders
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§ The first term is the reconstruction objective.  It represents the log-likelihood of the true data 
𝐺 under the reconstructed distribution 𝑝! 𝐺 𝑧 .

§ The second term acts as a regularizer, encouraging the distribution of latent variables 
𝑞" 𝑧 𝐺 to approximate a prior distribution 𝑝(𝑧), often standard normal distribution.

§ Encoder and Decoders are usually parameterized by GNNs (e.g. GCN or GAT layers). 

§ VAEs estimate the 𝑝(𝐺) by maximizing the Evidence Lower Bound (ELBO) as follows:



Normalizing Flows
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§ Normalizing flow estimates the density of graphs 𝑝(𝐺) directly with an invertible and deterministic
mapping between the latent variables and the graphs via the change of variable theorem.



Normalizing Flows
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§ Normalizing flow estimates the density of graphs 𝑝(𝐺) directly with an invertible and deterministic
mapping between the latent variables and the graphs via the change of variable theorem.

§ Since the encoder 𝑓(𝐺) needs to be invertible, the decoder is essentially 𝑓!"(𝑧).
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§ Normalizing flow estimates the density of graphs 𝑝(𝐺) directly with an invertible and deterministic
mapping between the latent variables and the graphs via the change of variable theorem.

§ Since the encoder 𝑓(𝐺) needs to be invertible, the decoder is essentially 𝑓!"(𝑧).

§ Normalizing-flow-based models are usually trained by maximizing the log-likelihood over the
training data 𝐺.



Generative Adversarial Networks
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§ GANs consists of two main components:

o Generator 𝑓# for generating realistic graphs
o Discriminator 𝑓$ for distinguishing between synthetic and real graphs.



Generative Adversarial Networks
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§ GANs consists of two main components:

o Generator 𝑓# for generating realistic graphs
o Discriminator 𝑓$ for distinguishing between synthetic and real graphs.

§ The training objective is the following min-max game:

§ This competition drives both networks to improve continuously, allowing GANs to 
generate increasingly realistic data.



Diffusion Models
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§ The forward diffusion process constantly adds noise to the data sample 𝑥%, while the reverse 
diffusion process recreates the true data sample from a Gaussian noise input 𝑥& ~𝒩 0, 𝐼 .



Diffusion Models
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§ The forward diffusion process constantly adds noise to the data sample 𝑥%, while the reverse 
diffusion process recreates the true data sample from a Gaussian noise input 𝑥& ~𝒩 0, 𝐼 .

§ Forward diffusion process:

𝛽' is a noise scheduler that controls the step size.



Diffusion Models
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§ The forward diffusion process constantly adds noise to the data sample 𝑥%, while the reverse 
diffusion process recreates the true data sample from a Gaussian noise input 𝑥& ~𝒩 0, 𝐼 .

§ Forward diffusion process:

𝛽' is a noise scheduler that controls the step size.

§ Statistical Physics: Reverse diffusion process would also be gaussian if 𝛽' is small enough!
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§ Since 𝑞 𝑥'() 𝑥') is intractable, we learn a model to approximate these conditional probabilities.
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§ Since 𝑞 𝑥'() 𝑥') is intractable, we learn a model to approximate these conditional probabilities.

§ We use variational lower bound to maximize log likelihood:



Sampling Strategies
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Random Sampling: draws latent samples from the prior distribution, in 
which the model learns to approximate the distribution of the observed 
graphs. 



Sampling Strategies
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Random Sampling: draws latent samples from the prior distribution, in 
which the model learns to approximate the distribution of the observed 
graphs. 

Controllable Sampling: samples new graphs with controls (i.e. 
desired properties)

o Disentangled sampling: factorizes the latent vector z with each
dimension 𝑧* focusing on one property 𝑝* , following the
disentanglement regularization that encourages the learnt latent
variables to be disentangled from each other.

o Conditional sampling: introduces a conditional code 𝒄 that 
explicitly controls the property of generated graphs. In this case, the 
final representation 1𝒛 is usually the concatenation of 𝒛 and 𝒄. 



Generation Strategies
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The decoder transforms latent codes into graph structures, tackling challenges like the
discrete and high-dimensional nature of graph data. To address non-differentiability, two
decoding strategies are commonly used:
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One-Shot Generation:

Generates the entire graph (adjacency matrix and optional node/edge features) in a single step.
• Advantages: Independent of node ordering, efficient for small graphs.
• Limitations: Requires predefined maximum nodes and scales poorly 𝑂 𝑁+ with graph size.

Sequential Generation:

Generates graphs step-by-step by sampling probabilistic node/edge matrices and relies on predefined 
node ordering (BFS).
• Advantages: Flexible for unknown graph sizes and allows constraint checking during generation.
• Limitations: Accumulates errors over long sequences, causing discrepancies in large graphs.
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§ We studied different approaches for deep graph generative models.

§ We evaluated the possible strategies for encoding, sampling, and decoding for latent variable models.
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Research Background

Lipids
MALDI-MSI 

2



Modelling Approaches
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Introduction to Graphs

Nodes (Vertices)

Edges (e
)

G = {V, E} 
V = {v1, . . . , vN} 
E = {e1, . . . , eM} 

1

2

3

4

5

1

2

3

4 5

6

0 1 0 1 0
1 0 1 0 0
1 1 0 0 1
1 0 0 0 1
1 0 0 0 1

• Graphs can represent various structures

• Can reveal hidden patterns and relationships 
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Graph Generative Models

• Definition: Models designed to 
generate graphs that mimic real-
world structures.

• Capturing the patterns & relationship

• Synthetic graphs that maintain the 
statistical properties

Chen et al, 2019

Real Synthetic

5



Why Study Generative Models for Graphs?

Insights /
Discoveries

Predictions / 
Simulations

6



Pdata(G)

xi~ Pdata(x)

Learn the
 Distribution

Model

Maximum Likelihood

∑I log pmodel (xi;θ*)
Model that generated 
the observed sample X

Basics of Graph Generative Models

zi~ N(0,1)

xi = f(zi; θ )
f == Neural Network To be 
Trained! 
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Proteins: Element of Life

Primary protein structure Tertiary protein structure

CA2+ BOUND CALCYCLIN

Polymer Representation 9



Computational Protein Design

Koge et al., 2012

In silico design Wild-type In silico design of
 ”miniprotein binders”

Cao et al., 2022

Designing de novo proteins for
biological problems

Designing more robust enzymes

Understand complex physical 
interactions
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Diffusion Models
Midjourney 

DALL-E 2

Generating images and other types 
of data by gradually adding random 
noise to data and then learning to 
reverse this 

Nvidia Developer Web Site
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Chroma: a generative model for proteins and 
protein complexes

Generative Model:

• Consider Joint Sequences
• Full 3D Structures of Proteins
• Diverse design constraints without retraining 

Tsichlaki and FitzHarris, 2016

• Multivariate Gaussian Distributions
• Enforce protein chain and Rg statistics 
    (Correlated Noise)

12

v0

v1



Fig. 1: Chroma is a generative model for proteins and protein complexes that combines structured diffusion 
for protein backbones with scalable molecular neural networks for backbone synthesis and all-atom design.
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Supplementary Figure 4: Random graphs with distance-weighted attachment efficiently capture long-range context
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Fig. 1: Chroma is a generative model for proteins and protein complexes that combines structured diffusion 
for protein backbones with scalable molecular neural networks for backbone synthesis and all-atom design.
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Bayes’ theorem for score functions

Conditioning Framework: Allows control over generated 
properties



Supplementary Figure 2: Low-temperature sampling drives towards high-likelihood states with increased secondary 
structure content. 
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Less random noise in each denoising step, more conservative



Fig. 2: Analysis of unconditional samples reveals diverse geometries that exhibit new higher-order 
structures and refold in silico.

Chroma generates 100,000 single-chain proteins 
and 20,000 protein complexes

ANTIBODY-ANTIGEN COMPLEX 
(3HFM, PDB)
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Fig. 2: Analysis of unconditional samples reveals diverse geometries that exhibit new higher-order 
structures and refold in silico.

Comparison with AlphaFold 
Predictions

Unseen structures at a frequency 
that increases sharply with length
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Fig. 3: Symmetry, substructure and shape conditioning enable geometric molecular programming.

Conditioners parameterize the protein design

19

Quasilinear computation time



Fig. 3: Symmetry, substructure, and shape conditioning enable geometric molecular programming.
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Fig. 4: Protein structure classifiers and caption models can bias the sampling process 
towards user-specified properties.
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Fig. 5: Experimental validation of Chroma-designed proteins.

Secondary structure conditional designs.
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Fig. 5: Experimental validation of Chroma-designed proteins.

Secondary structure conditional designs.
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Chroma can generate protein sequences:

• With arbitrary shapes and conditioned structures
• That is structurally stable and soluble
• While being computationally inexpensive

Conclusion Remarks

24



Thank you!
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ChromaBackbone Hyperparameters
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The Loss Functions

27


